ترغب بنشر مسار تعليمي؟ اضغط هنا

An overview of generalized entropic forms

115   0   0.0 ( 0 )
 نشر من قبل Antonio Maria Scarfone
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this focus letter is to present a comprehensive classification of the main entropic forms introduced in the last fifty years in the framework of statistical physics and information theory. Most of them can be grouped into three families, characterized by two-deformation parameters, introduced respectively by Sharma, Taneja, and Mittal (entropies of degree $(alpha,,beta$)), by Sharma and Mittal (entropies of order $(alpha,,beta)$), and by Hanel and Thurner (entropies of class $(c,,d)$). Many entropic forms examined will be characterized systematically by means of important concepts such as their axiomatic foundations {em `{a} la} Shannon-Khinchin and the consequent composability rule for statistically independent systems. Other critical aspects related to the Lesche stability of information measures and their consistency with the Shore-Johnson axioms will be briefly discussed on a general ground.



قيم البحث

اقرأ أيضاً

64 - Ariel Amir 2019
The Generalized Central Limit Theorem is a remarkable generalization of the Central Limit Theorem, showing that the sum of a large number of independent, identically-distributed (i.i.d) random variables with infinite variance may converge under appro priate scaling to a distribution belonging to a special family known as Levy stable distributions. Similarly, the maximum of i.i.d. variables may converge to a distribution belonging to one of three universality classes (Gumbel, Weibull and Frechet). Here, we rederive these known results following a mathematically non-rigorous yet highly transparent renormalization-group-like approach that captures both of these universal results following a nearly identical procedure.
The extremization of an appropriate entropic functional may yield to the probability distribution functions maximizing the respective entropic structure. This procedure is known in Statistical Mechanics and Information Theory as Jaynes Formalism and has been up to now a standard methodology for deriving the aforementioned distributions. However, the results of this formalism do not always coincide with the ones obtained following different approaches. In this study we analyse these inconsistencies in detail and demonstrate that Jaynes formalism leads to correct results only for specific entropy definitions.
107 - O.Benichou 2000
We study the dynamics of a carrier, which performs a biased motion under the influence of an external field E, in an environment which is modeled by dynamic percolation and created by hard-core particles. The particles move randomly on a simple cubic lattice, constrained by hard-core exclusion, and they spontaneously annihilate and re-appear at some prescribed rates. Using decoupling of the third-order correlation functions into the product of the pairwise carrier-particle correlations we determine the density profiles of the environment particles, as seen from the stationary moving carrier, and calculate its terminal velocity, V_c, as the function of the applied field and other system parameters. We find that for sufficiently small driving forces the force exerted on the carrier by the environment particles shows a viscous-like behavior. An analog Stokes formula for such dynamic percolative environments and the corresponding friction coefficient are derived. We show that the density profile of the environment particles is strongly inhomogeneous: In front of the stationary moving carrier the density is higher than the average density, $rho_s$, and approaches the average value as an exponential function of the distance from the carrier. Past the carrier the local density is lower than $rho_s$ and the relaxation towards $rho_s$ may proceed differently depending on whether the particles number is or is not explicitly conserved.
We present a self-contained discussion of the universality classes of the generalized epidemic process (GEP) on Poisson random networks, which is a simple model of social contagions with cooperative effects. These effects lead to rich phase transitio nal behaviors that include continuous and discontinuous transitions with tricriticality in between. With the help of a comprehensive finite-size scaling theory, we numerically confirm static and dynamic scaling behaviors of the GEP near continuous phase transitions and at tricriticality, which verifies the field-theoretical results of previous studies. We also propose a proper criterion for the discontinuous transition line, which is shown to coincide with the bond percolation threshold.
The suppression of density fluctuations at different length scales is the hallmark of hyperuniformity. However, its existence and significance in jammed solids is still a matter of debate. We explore the presence of this hidden order in a manybody in teracting model known to exhibit a rigidity transition, and find that in contrary to exisiting speculations, density fluctuations in the rigid phase are only suppressed up to a finite lengthscale. This length scale grows and diverges at the critical point of the rigidity transition, such that the system is hyperuniform in the fluid phase. This suggests that hyperuniformity is a feature generically absent in jammed solids. Surprisingly, corresponding fluctuations in geometrical properties of the model are found to be strongly suppressed over an even greater but still finite lengthscale, indicating that the system self organizes in preference to suppress geometrical fluctuations at the expense of incurring density fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا