ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Stop with Surprisingly Few Samples

80   0   0.0 ( 0 )
 نشر من قبل Tianyi Zhang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a discounted infinite horizon optimal stopping problem. If the underlying distribution is known a priori, the solution of this problem is obtained via dynamic programming (DP) and is given by a well known threshold rule. When information on this distribution is lacking, a natural (though naive) approach is explore-then-exploit, whereby the unknown distribution or its parameters are estimated over an initial exploration phase, and this estimate is then used in the DP to determine actions over the residual exploitation phase. We show: (i) with proper tuning, this approach leads to performance comparable to the full information DP solution; and (ii) despite common wisdom on the sensitivity of such plug in approaches in DP due to propagation of estimation errors, a surprisingly short (logarithmic in the horizon) exploration horizon suffices to obtain said performance. In cases where the underlying distribution is heavy-tailed, these observations are even more pronounced: a ${it single , sample}$ exploration phase suffices.



قيم البحث

اقرأ أيضاً

77 - Xinshi Chen , Hanjun Dai , Yu Li 2020
There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping cri teria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a ``fixed-depth for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoid ``over-thinking, or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks.
How can you sample good negative examples for contrastive learning? We argue that, as with metric learning, contrastive learning of representations benefits from hard negative samples (i.e., points that are difficult to distinguish from an anchor poi nt). The key challenge toward using hard negatives is that contrastive methods must remain unsupervised, making it infeasible to adopt existing negative sampling strategies that use true similarity information. In response, we develop a new family of unsupervised sampling methods for selecting hard negative samples where the user can control the hardness. A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible. The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
Recent few-shot learning works focus on training a model with prior meta-knowledge to fast adapt to new tasks with unseen classes and samples. However, conventional time-series classification algorithms fail to tackle the few-shot scenario. Existing few-shot learning methods are proposed to tackle image or text data, and most of them are neural-based models that lack interpretability. This paper proposes an interpretable neural-based framework, namely textit{Dual Prototypical Shapelet Networks (DPSN)} for few-shot time-series classification, which not only trains a neural network-based model but also interprets the model from dual granularity: 1) global overview using representative time series samples, and 2) local highlights using discriminative shapelets. In particular, the generated dual prototypical shapelets consist of representative samples that can mostly demonstrate the overall shapes of all samples in the class and discriminative partial-length shapelets that can be used to distinguish different classes. We have derived 18 few-shot TSC datasets from public benchmark datasets and evaluated the proposed method by comparing with baselines. The DPSN framework outperforms state-of-the-art time-series classification methods, especially when training with limited amounts of data. Several case studies have been given to demonstrate the interpret ability of our model.
387 - Ziyi Yang , Jun Shu , Yong Liang 2020
Current machine learning has made great progress on computer vision and many other fields attributed to the large amount of high-quality training samples, while it does not work very well on genomic data analysis, since they are notoriously known as small data. In our work, we focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients that can guide treatment decisions for a specific individual through training on small data. In fact, doctors and clinicians always address this problem by studying several interrelated clinical variables simultaneously. We attempt to simulate such clinical perspective, and introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks and transfer it to help address new tasks. Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification. Observing that gene expression data have specifically high dimensionality and high noise properties compared with image data, we proposed a new extension of it by appending two modules to address these issues. Concretely, we append a feature selection layer to automatically filter out the disease-irrelated genes and incorporate a sample reweighting strategy to adaptively remove noisy data, and meanwhile the extended model is capable of learning from a limited number of training examples and generalize well. Simulations and real gene expression data experiments substantiate the superiority of the proposed method for predicting the subtypes of disease and identifying potential disease-related genes.
We consider the transfer of experience samples (i.e., tuples < s, a, s, r >) in reinforcement learning (RL), collected from a set of source tasks to improve the learning process in a given target task. Most of the related approaches focus on selectin g the most relevant source samples for solving the target task, but then all the transferred samples are used without considering anymore the discrepancies between the task models. In this paper, we propose a model-based technique that automatically estimates the relevance (importance weight) of each source sample for solving the target task. In the proposed approach, all the samples are transferred and used by a batch RL algorithm to solve the target task, but their contribution to the learning process is proportional to their importance weight. By extending the results for importance weighting provided in supervised learning literature, we develop a finite-sample analysis of the proposed batch RL algorithm. Furthermore, we empirically compare the proposed algorithm to state-of-the-art approaches, showing that it achieves better learning performance and is very robust to negative transfer, even when some source tasks are significantly different from the target task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا