ﻻ يوجد ملخص باللغة العربية
Context. The xGASS and xCOLD GASS surveys have measured the atomic (HI) and molecular gas (H2) content of a large and representative sample of nearby galaxies (redshift range of 0.01 $lt$ z $lt$ 0.05). Aims. We present optical longslit spectra for a subset of the xGASS and xCOLD GASS galaxies to investigate the correlation between radial metallicity profiles and cold gas content. In addition to data from Moran et al. (2012), this paper presents new optical spectra for 27 galaxies in the stellar mass range of 9.0 $leq$ log Mstar/Msun $leq$ 10.0. Methods. The longslit spectra were taken along the major axis of the galaxies, allowing us to obtain radial profiles of the gas-phase oxygen abundance (12 + log(O/H)). The slope of a linear fit to these radial profiles is defined as the metallicity gradient. We investigated correlations between these gradients and global galaxy properties, such as star formation activity and gas content. In addition, we examined the correlation of local metallicity measurements and the global HI mass fraction. Results. We obtained two main results: (i) the local metallicity is correlated with the global HI mass fraction, which is in good agreement with previous results. A simple toy model suggests that this correlation points towards a local gas regulator model; (ii) the primary driver of metallicity gradients appears to be stellar mass surface density (as a proxy for morphology). Conclusions. This work comprises one of the few systematic observational studies of the influence of the cold gas on the chemical evolution of star-forming galaxies, as considered via metallicity gradients and local measurements of the gas-phase oxygen abundance. Our results suggest that local density and local HI mass fraction are drivers of chemical evolution and the gas-phase metallicity.
We use our catalogue of structural decomposition measurements for the extended GALEX Arecibo SDSS Survey (xGASS) to study the role of bulges both along and across the galaxy star-forming main sequence (SFMS). We show that the slope in the $sSFR$-$M_{
We argue that the interplay between cosmic rays, the initial mass function, and star formation plays a crucial role in regulating the star-forming main sequence. To explore these phenomena we develop a toy model for galaxy evolution in which star for
Observations have revealed that disturbances in the cold neutral atomic hydrogen (HI) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated HI spectra (global HI a
The origin of the star forming main sequence ( i.e., the relation between star formation rate and stellar mass, globally or on kpc-scales; hereafter SFMS) remains a hotly debated topic in galaxy evolution. Using the ALMA-MaNGA QUEnching and STar form
This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z=0.4-1.4 star-forming main sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation ra