ﻻ يوجد ملخص باللغة العربية
The heavy fermion state with Kondo-hybridization (KH), usually manifested in f-electron systems with lanthanide or actinide elements, was recently discovered in several 3d transition metal compounds without f-electrons. However, KH has not yet been observed in 4d/5d transition metal compounds, since more extended 4d/5d orbitals do not usually form flat bands that supply localized electrons appropriate for Kondo pairing. Here, we report a doping- and temperature-dependent angle-resolved photoemission study on 4d Ca2-xSrxRuO4, which shows the signature of KH. We observed a spectral weight transfer in the {gamma}-band, reminiscent of an orbital-selective Mott phase (OSMP). The Mott localized {gamma}-band induces KH with the itinerant b{eta}-band, resulting in spectral weight suppression around the Fermi level. Our work is the first to demonstrate the evolution of the OSMP with possible KH among 4d electrons, and thereby expands the material boundary of Kondo physics to 4d multi-orbital systems.
Iron-based superconductors display a variety of magnetic phases originating in the competition between electronic, orbital, and spin degrees of freedom. Previous theoretical investigations of the multi-orbital Hubbard model in one dimension revealed
We study the phase transition in Cu-substituted iron-based superconductors with a new developed real-space Greens function method. We find that Cu substitution has strong effect on the orbital-selective Mott transition introduced by the Hunds rule co
We report a quantum phase transition between orbital-selective Mott states, with different localized orbitals, in a Hunds metals model. Using the density matrix renormalization group, the phase diagram is constructed varying the electronic density an
Electrons in a simple correlated system behave either as itinerant charge carriers or as localized moments. However, there is growing evidence for the coexistence of itinerant electrons and local moments in transition metals with nearly degenerate $d
We study non-local correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter with robust Hunds coupling,