ﻻ يوجد ملخص باللغة العربية
The covariance matrix plays a fundamental role in many modern exploratory and inferential statistical procedures, including dimensionality reduction, hypothesis testing, and regression. In low-dimensional regimes, where the number of observations far exceeds the number of variables, the optimality of the sample covariance matrix as an estimator of this parameter is well-established. High-dimensional regimes do not admit such a convenience, however. As such, a variety of estimators have been derived to overcome the shortcomings of the sample covariance matrix in these settings. Yet, the question of selecting an optimal estimator from among the plethora available remains largely unaddressed. Using the framework of cross-validated loss-based estimation, we develop the theoretical underpinnings of just such an estimator selection procedure. In particular, we propose a general class of loss functions for covariance matrix estimation and establish finite-sample risk bounds and conditions for the asymptotic optimality of the cross-validated estimator selector with respect to these loss functions. We evaluate our proposed approach via a comprehensive set of simulation experiments and demonstrate its practical benefits by application in the exploratory analysis of two single-cell transcriptome sequencing datasets. A free and open-source software implementation of the proposed methodology, the cvCovEst R package, is briefly introduced.
This paper considers the regularized estimation of covariance matrices (CM) of high-dimensional (compound) Gaussian data for minimum variance distortionless response (MVDR) beamforming. Linear shrinkage is applied to improve the accuracy and conditio
In a Gaussian graphical model, the conditional independence between two variables are characterized by the corresponding zero entries in the inverse covariance matrix. Maximum likelihood method using the smoothly clipped absolute deviation (SCAD) pen
We propose a Bayesian methodology for estimating spiked covariance matrices with jointly sparse structure in high dimensions. The spiked covariance matrix is reparametrized in terms of the latent factor model, where the loading matrix is equipped wit
In applied multivariate statistics, estimating the number of latent dimensions or the number of clusters is a fundamental and recurring problem. One common diagnostic is the scree plot, which shows the largest eigenvalues of the data matrix; the user
We consider the problem of estimating high-dimensional covariance matrices of a particular structure, which is a summation of low rank and sparse matrices. This covariance structure has a wide range of applications including factor analysis and rando