ﻻ يوجد ملخص باللغة العربية
We develop a variational Bayesian (VB) approach for estimating large-scale dynamic network models in the network autoregression framework. The VB approach allows for the automatic identification of the dynamic structure of such a model and obtains a direct approximation of the posterior density. Compared to Markov Chain Monte Carlo (MCMC) based sampling approaches, the VB approach achieves enhanced computational efficiency without sacrificing estimation accuracy. In the simulation study conducted here, the proposed VB approach detects various types of proper active structures for dynamic network models. Compared to the alternative approach, the proposed method achieves similar or better accuracy, and its computational time is halved. In a real data analysis scenario of day-ahead natural gas flow prediction in the German gas transmission network with 51 nodes between October 2013 and September 2015, the VB approach delivers promising forecasting accuracy along with clearly detected structures in terms of dynamic dependence.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi
Bayesian methods have proved powerful in many applications for the inference of model parameters from data. These methods are based on Bayes theorem, which itself is deceptively simple. However, in practice the computations required are intractable e
Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densit
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structur
Latent space models are popular for analyzing dynamic network data. We propose a variational approach to estimate the model parameters as well as the latent positions of the nodes in the network. The variational approach is much faster than Markov ch