ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry enriched phases of quantum circuits

167   0   0.0 ( 0 )
 نشر من قبل Yimu Bao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum circuits consisting of random unitary gates and subject to local measurements have been shown to undergo a phase transition, tuned by the rate of measurement, from a state with volume-law entanglement to an area-law state. From a broader perspective, these circuits generate a novel ensemble of quantum many-body states at their output. In this paper we characterize this ensemble and classify the phases that can be established as steady states. Symmetry plays a nonstandard role in that the physical symmetry imposed on the circuit elements does not on its own dictate the possible phases. Instead, it is extended by dynamical symmetries associated with this ensemble to form an enlarged symmetry. Thus we predict phases that have no equilibrium counterpart and could not have been supported by the physical circuit symmetry alone. We give the following examples. First, we classify the phases of a circuit operating on qubit chains with $mathbb{Z}_2$ symmetry. One striking prediction, corroborated with numerical simulation, is the existence of distinct volume-law phases in one dimension, which nonetheless support true long-range order. We furthermore argue that owing to the enlarged symmetry, this system can in principle support a topological area-law phase, protected by the combination of the circuit symmetry and a dynamical permutation symmetry. Second, we consider a gaussian fermion circuit that only conserves fermion parity. Here the enlarged symmetry gives rise to a $U(1)$ critical phase at moderate measurement rates and a Kosterlitz-Thouless transition to an area-law phase. We comment on the interpretation of the different phases in terms of the capacity to encode quantum information. We discuss close analogies to the theory of spin glasses pioneered by Edwards and Anderson as well as crucial differences that stem from the quantum nature of the circuit ensemble.



قيم البحث

اقرأ أيضاً

We prove the existence of non-equilibrium phases of matter in the prethermal regime of periodically-driven, long-range interacting systems, with power-law exponent $alpha > d$, where $d$ is the dimensionality of the system. In this context, we predic t the existence of a disorder-free, prethermal discrete time crystal in one dimension -- a phase strictly forbidden in the absence of long-range interactions. Finally, using a combination of analytic and numerical methods, we highlight key experimentally observable differences between such a prethermal time crystal and its many-body localized counterpart.
We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians (of which the PXP is a particular realization), that we refer to as quantum local random networks. We find two types of scars, that we call stochastic and stat istical. We identify specific signatures of the localized nature of these eigenstates by analyzing a combination of indicators of quantum ergodicity and properties related to the network structure of the model. Within this parallelism, we associate the emergence of statistical scars to the presence of motifs in the network, that reflects how these are associated to links with anomalously small connectivity (as measured, e.g., by their betweenness). Most remarkably, statistical scars appear at well-defined values of energy, predicted solely on the base of network theory. We study the scaling of the number of statistical scars with system size: below a threshold connectivity, we find that the number of statistical scars increases with system size. This allows to the define the concept of statistical stability of quantum scars.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea r in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
We study the level-spacing statistics in the entanglement spectrum of output states of random universal quantum circuits where qubits are subject to a finite probability of projection to the computational basis at each time step. We encounter two pha se transitions with increasing projection rate: The first is the volume-to-area law transition observed in quantum circuits with projective measurements; The second separates the pure Poisson level statistics phase at large projective measurement rates from a regime of residual level repulsion in the entanglement spectrum within the area-law phase, characterized by non-universal level spacing statistics that interpolates between the Wigner-Dyson and Poisson distributions. By applying a tensor network contraction algorithm introduced in Ref. [1] to the circuit spacetime, we identify this second projective-measurement-driven transition as a percolation transition of entangled bonds. The same behavior is observed in both circuits of random two-qubit unitaries and circuits of universal gate sets, including the set implemented by Google in its Sycamore circuits.
We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a $mathbb{Z}_2$ symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا