ﻻ يوجد ملخص باللغة العربية
We report on exotic response properties in 3D time-reversal invariant Weyl semimetals with mirror symmetry. Despite having a vanishing anomalous Hall coefficient, we find that the momentum-space quadrupole moment formed by four Weyl nodes determines the coefficient of a mixed emph{electromagnetic charge-stress} response, in which momentum flows perpendicular to an applied electric field, and electric charge accumulates on certain types of lattice defects. This response is described by a mixed Chern-Simons-like term in 3 spatial dimensions, which couples a rank-2 gauge field to the usual electromagnetic gauge field. On certain 2D surfaces of the bulk 3D Weyl semimetal, we find what we will call rank-2 chiral fermions, with $omega =k_x k_y$ dispersion. The intrinsically 2D rank-2 chiral fermions have a mixed charge-momentum anomaly which is cancelled by the bulk of the 3D system.
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons f
The Weyl semimetal is characterized by three-dimensional linear band touching points called Weyl nodes. These nodes come in pairs with opposite chiralities. We show that the coupling of circularly polarized photons with these chiral electrons generat
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum sp
We suggest the possibility of a linear magnetochiral effect in time reversal breaking Weyl semimetals. Generically the magnetochiral effect consists in a simultaneous linear dependence of the magnetotransport coefficients with the magnetic field and
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimeta