ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective field theory interpretation of lepton magnetic and electric dipole moments

79   0   0.0 ( 0 )
 نشر من قبل Peter Stoffer
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform a model-independent analysis of the magnetic and electric dipole moments of the muon and electron. We give expressions for the dipole moments in terms of operator coefficients of the low-energy effective field theory (LEFT) and the Standard Model effective field theory (SMEFT). We use one-loop renormalization group improved perturbation theory, including the one-loop matching from SMEFT onto LEFT, and one-loop lepton matrix elements of the effective-theory operators. Semileptonic four-fermion operators involving light quarks give sizable non-perturbative contributions to the dipole moments, which are included in our analysis. We find that only a very limited set of the SMEFT operators is able to generate the current deviation of the magnetic moment of the muon from its Standard Model expectation.



قيم البحث

اقرأ أيضاً

177 - Martin Jung 2016
Electric dipole moments and charged-lepton flavour-violating processes are extremely sensitive probes for new physics, complementary to direct searches as well as flavour-changing processes in the quark sector. Beyond the smoking-gun feature of a pot ential significant measurement, however, it is crucial to understand their implications for new physics models quantitatively. The corresponding multi-scale problem of relating the existing high-precision measurements to fundamental parameters can be approached model-independently to a large extent; however, care must be taken to include the uncertainties from especially nuclear and QCD calculations properly.
Searches for permanent electric dipole moments of fundamental particles and systems with spin are the experiments most sensitive to new CP violating physics and a top priority of a growing international community. We briefly review the current status of the field emphasizing on the charged leptons and lightest baryons.
We calculate the electric dipole moments (EDMs) of three-nucleon systems at leading order in pionless effective field theory. The one-body contributions that arise from permanent proton and neutron EDMs and the two-body contributions that arise from CP-odd nucleon-nucleon interactions are taken into account. Neglecting the Coulomb interaction, we consider the triton and ${}^3$He, and also investigate them in the Wigner-SU(4) symmetric limit. We also calculate the electric dipole form factor and find numerically that the momentum dependence of the electric dipole form factor in the Wigner limit is, up to an overall constant (and numerical accuracy), the same as the momentum dependence of the charge form factor.
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional $cal CP$ violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, ten sor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to $cal CP$ violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as $1.27times10^{-24},ecdot{rm cm}$ for the up quark and $1.17times10^{-24},ecdot{rm cm}$ for the down quark at the scale of $4,rm GeV^2$. We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about three orders of magnitude leading to a much more sensitive probe of new physics models.
Postulating the existence of a fnite-mass mediator of T,P-odd coupling between atomic electrons and nucleons we consider its effect on permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis we derive limits on coupling strengths and carrier masses from experimental limits on EDM of 199Hg atom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا