Convergence analysis of the stochastic reflected forward-backward splitting algorithm


الملخص بالإنكليزية

We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate $mathcal{O}(log(n)/n)$ in expectation for the strongly monotone case, as well as almost sure convergence for the general case. Furthermore, in the context of application to convex-concave saddle point problems, we derive the rate of the primal-dual gap. In particular, we also obtain $mathcal{O}(1/n)$ rate convergence of the primal-dual gap in the deterministic setting.

تحميل البحث