ﻻ يوجد ملخص باللغة العربية
We propose and analyze the convergence of a novel stochastic algorithm for solving monotone inclusions that are the sum of a maximal monotone operator and a monotone, Lipschitzian operator. The propose algorithm requires only unbiased estimations of the Lipschitzian operator. We obtain the rate $mathcal{O}(log(n)/n)$ in expectation for the strongly monotone case, as well as almost sure convergence for the general case. Furthermore, in the context of application to convex-concave saddle point problems, we derive the rate of the primal-dual gap. In particular, we also obtain $mathcal{O}(1/n)$ rate convergence of the primal-dual gap in the deterministic setting.
In this paper, we consider a generalized forward-backward splitting (G-FBS) operator for solving the monotone inclusions, and analyze its nonexpansive properties in a context of arbitrary variable metric. Then, for the associated fixed-point iteratio
We consider monotone inclusions defined on a Hilbert space where the operator is given by the sum of a maximal monotone operator $T$ and a single-valued monotone, Lipschitz continuous, and expectation-valued operator $V$. We draw motivation from the
In this paper we propose a new operator splitting algorithm for distributed Nash equilibrium seeking under stochastic uncertainty, featuring relaxation and inertial effects. Our work is inspired by recent deterministic operator splitting methods, des
Many problems in science and engineering involve, as part of their solution process, the consideration of a separable function which is the sum of two convex functions, one of them possibly non-smooth. Recently a few works have discussed inexa
Monotone inclusions play an important role in studying various convex minimization problems. In this paper, we propose a forward-partial inverse-half-forward splitting (FPIHFS) algorithm for finding a zero of the sum of a maximally monotone operator,