ترغب بنشر مسار تعليمي؟ اضغط هنا

IRIS observations of chromospheric heating by acoustic waves in solar quiet and active regions

160   0   0.0 ( 0 )
 نشر من قبل Michal Sobotka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: To study the heating of solar chromospheric magnetic and nonmagnetic regions by acoustic and magnetoacoustic waves, the deposited acoustic-energy flux derived from observations of strong chromospheric lines is compared with the total integrated radiative losses. Methods: A set of 23 quiet-Sun and weak-plage regions were observed in the Mg II k and h lines with the Interface Region Imaging Spectrograph (IRIS). The deposited acoustic-energy flux was derived from Doppler velocities observed at two different geometrical heights corresponding to the middle and upper chromosphere. A set of scaled nonlocal thermodynamic equilibrium 1D hydrostatic semi-empirical models (obtained by fitting synthetic to observed line profiles) was applied to compute the radiative losses. The characteristics of observed waves were studied by means of a wavelet analysis. Results: Observed waves propagate upward at supersonic speed. In the quiet chromosphere, the deposited acoustic flux is sufficient to balance the radiative losses and maintain the semi-empirical temperatures in the layers under study. In the active-region chromosphere, the comparison shows that the contribution of acoustic-energy flux to the radiative losses is only 10 - 30 %. Conclusions: Acoustic and magnetoacoustic waves play an important role in the chromospheric heating, depositing a main part of their energy in the chromosphere. Acoustic waves compensate for a substantial fraction of the chromospheric radiative losses in quiet regions. In active regions, their contribution is too small to balance the radiative losses and the chromosphere has to be heated by other mechanisms.



قيم البحث

اقرأ أيضاً

Aims. To investigate the role of acoustic and magneto-acoustic waves in heating the solar chromosphere, observations in strong chromospheric lines are analyzed by comparing the deposited acoustic-energy flux with the total integrated radiative losses . Methods. Quiet-Sun and weak-plage regions were observed in the Ca II 854.2 nm and H-alpha lines with the Fast Imaging Solar Spectrograph (FISS) at the 1.6-m Goode Solar Telescope (GST) on 2019 October 3 and in the H-alpha and H-beta lines with the echelle spectrograph attached to the Vacuum Tower Telescope (VTT) on 2018 December 11 and 2019 June 6. The deposited acoustic energy flux at frequencies up to 20 mHz was derived from Doppler velocities observed in line centers and wings. Radiative losses were computed by means of a set of scaled non-LTE 1D hydrostatic semi-empirical models obtained by fitting synthetic to observed line profiles. Results. In the middle chromosphere (h = 1000-1400 km), the radiative losses can be fully balanced by the deposited acoustic energy flux in a quiet-Sun region. In the upper chromosphere (h > 1400 km), the deposited acoustic flux is small compared to the radiative losses in quiet as well as in plage regions. The crucial parameter determining the amount of deposited acoustic flux is the gas density at a given height. Conclusions. The acoustic energy flux is efficiently deposited in the middle chromosphere, where the density of gas is sufficiently high. About 90% of the available acoustic energy flux in the quiet-Sun region is deposited in these layers, and thus it is a major contributor to the radiative losses of the middle chromosphere. In the upper chromosphere, the deposited acoustic flux is too low, so that other heating mechanisms have to act to balance the radiative cooling.
Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm a nd Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4 and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric magnetic field strength between 300 G and 1300 G and inclination of 20-60 degrees, the contribution increases from 23 % (chromospheric network) to 54 % (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.
The importance of the chromosphere in the mass and energy transport within the solar atmosphere is now widely recognised. This review discusses the physics of magnetohydrodynamic (MHD) waves and instabilities in large-scale chromospheric structures a s well as in magnetic flux tubes. We highlight a number of key observational aspects that have helped our understanding of the role of the solar chromosphere in various dynamic processes and wave phenomena, and the heating scenario of the solar chromosphere is also discussed. The review focuses on the physics of waves and invokes the basics of plasma instabilities in the context of this important layer of the solar atmosphere. Potential implications, future trends and outstanding questions are also delineated.
Acoustic and magnetoacoustic waves are considered to be possible agents of chromospheric heating. We present a comparison of deposited acoustic energy flux with total integrated radiative losses in the middle chromosphere of the quiet Sun and a weak plage. The comparison is based on a consistent set of high-resolution observations acquired by the IBIS instrument in the Ca II 854.2 nm line. The deposited acoustic-flux energy is derived from Doppler velocities observed in the line core and a set of 1737 non-LTE 1D hydrostatic semi-empirical models, which also provide the radiative losses. The models are obtained by scaling the temperature and column mass of five initial models VAL B-F to get the best fit of synthetic to observed profiles. We find that the deposited acoustic-flux energy in the quiet-Sun chromosphere balances 30-50 % of the energy released by radiation. In the plage, it contributes by 50-60 % in locations with vertical magnetic field and 70-90 % in regions where the magnetic field is inclined more than 50 degrees to the solar surface normal.
We investigate the Interface Region Imaging Spectrograph (IRIS) observations of the quiet-Sun (QS) to understand the propagation of acoustic waves in transition region (TR) from photosphere. We selected a few IRIS spectral lines, which include the ph otospheric (Mn~{sc i} 2801.25~{AA}), chromospheric (Mg~{sc ii} k 2796.35~{AA}) and TR (C~{sc ii} 1334.53~{AA}), to investigate the acoustic wave propagation.The wavelet cross-spectrum reveals significant coherence (about 70% locations) between photosphere and chromosphere. Few minutes oscillations (i.e., period range from 1.6 to 4.0 minutes) successfully propagate into chromosphere from photosphere, which is confirmed by dominance of positive phase lags. However, in higher period regime (i.e., greater than $approx$ 4.5 minutes), the downward propagation dominates is evident by negative phase lags. The broad spectrum of waves (i.e., 2.5-6.0 minutes) propagates freely upwards from chromosphere to TR. We find that only about 45% locations (out of 70%) show correlation between chromosphere and TR. Our results indicate that roots of 3 minutes oscillations observed within chromosphere/TR are located in photosphere. Observations also demonstrate that 5 minute oscillations propagate downward from chromosphere. textbf{However, some locations within QS also show successful propagation of 5 minute oscillations as revealed by positive phase lags, which might be the result of magnetic field}. In addition, our results clearly show that a significant power, within period ranging from 2.5 to 6.0 minutes, of solar chromosphere is freely transmitted into TR triggering atmospheric oscillations. Theoretical implications of our observational results are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا