ترغب بنشر مسار تعليمي؟ اضغط هنا

Supporting More Active Users for Massive Access via Data-assisted Activity Detection

182   0   0.0 ( 0 )
 نشر من قبل Xinyu Bian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive machine-type communication (mMTC) has been regarded as one of the most important use scenarios in the fifth generation (5G) and beyond wireless networks, which demands scalable access for a large number of devices. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. Particularly, the two key tasks in massive access systems, namely, user activity detection and data detection, were handled separately in most existing studies, which ignored the common sparsity pattern in the received pilot and data signal. Moreover, error detection and correction in the payload data provide additional mechanisms for performance improvement. In this paper, we propose a data-assisted activity detection framework, which aims at supporting more active users by reducing the activity detection error, consisting of false alarm and missed detection errors. Specifically, after an initial activity detection step based on the pilot symbols, the false alarm users are filtered by applying energy detection for the data symbols; once data symbols of some active users have been successfully decoded, their effect in activity detection will be resolved via successive pilot interference cancellation, which reduces the missed detection error. Simulation results show that the proposed algorithm effectively increases the activity detection accuracy, and it is able to support $sim 20%$ more active users compared to a conventional method in some sample scenarios.



قيم البحث

اقرأ أيضاً

141 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
In this paper, we propose a turbo receiver for joint activity detection and data decoding in grant-free massive random access, which iterates between a detector and a belief propagation (BP)-based channel decoder. Specifically, responsible for user a ctivity detection, channel estimation, and soft data symbol detection, the detector is developed based on a bilinear inference problem that exploits the common sparsity pattern in the received pilot and data signals. The bilinear generalized approximate message passing (BiG-AMP) algorithm is adopted to solve the problem using probabilities of the transmitted data symbols estimated by the channel decoder as prior knowledge. In addition, extrinsic information is derived from the detector to improve the channel decoding accuracy of the decoder. Simulation results show significant improvements achieved by the proposed turbo receiver compared with conventional designs.
326 - Xinyu Bian , Yuyi Mao , Jun Zhang 2021
In the massive machine-type communication (mMTC) scenario, a large number of devices with sporadic traffic need to access the network on limited radio resources. While grant-free random access has emerged as a promising mechanism for massive access, its potential has not been fully unleashed. In particular, the common sparsity pattern in the received pilot and data signal has been ignored in most existing studies, and auxiliary information of channel decoding has not been utilized for user activity detection. This paper endeavors to develop advanced receivers in a holistic manner for joint activity detection, channel estimation, and data decoding. In particular, a turbo receiver based on the bilinear generalized approximate message passing (BiG-AMP) algorithm is developed. In this receiver, all the received symbols will be utilized to jointly estimate the channel state, user activity, and soft data symbols, which effectively exploits the common sparsity pattern. Meanwhile, the extrinsic information from the channel decoder will assist the joint channel estimation and data detection. To reduce the complexity, a low-cost side information-aided receiver is also proposed, where the channel decoder provides side information to update the estimates on whether a user is active or not. Simulation results show that the turbo receiver is able to reduce the activity detection, channel estimation, and data decoding errors effectively, while the side information-aided receiver notably outperforms the conventional method with a relatively low complexity.
97 - Ye Xue , Yifei Shen , Vincent Lau 2020
Massive MIMO has been regarded as a key enabling technique for 5G and beyond networks. Nevertheless, its performance is limited by the large overhead needed to obtain the high-dimensional channel information. To reduce the huge training overhead asso ciated with conventional pilot-aided designs, we propose a novel blind data detection method by leveraging the channel sparsity and data concentration properties. Specifically, we propose a novel $ell_3$-norm-based formulation to recover the data without channel estimation. We prove that the global optimal solution to the proposed formulation can be made arbitrarily close to the transmitted data up to a phase-permutation ambiguity. We then propose an efficient parameter-free algorithm to solve the $ell_3$-norm problem and resolve the phase permutation ambiguity. We also derive the convergence rate in terms of key system parameters such as the number of transmitters and receivers, the channel noise power, and the channel sparsity level. Numerical experiments will show that the proposed scheme has superior performance with low computational complexity.
147 - Xidong Mu , Yuanwei Liu , Li Guo 2020
The fundamental intelligent reflecting surface (IRS) deployment problem is investigated for IRS-assisted networks, where one IRS is arranged to be deployed in a specific region for assisting the communication between an access point (AP) and multiple users. Specifically, three multiple access schemes are considered, namely non-orthogonal multiple access (NOMA), frequency division multiple access (FDMA), and time division multiple access (TDMA). The weighted sum rate maximization problem for joint optimization of the deployment location and the reflection coefficients of the IRS as well as the power allocation at the AP is formulated. The non-convex optimization problems obtained for NOMA and FDMA are solved by employing monotonic optimization and semidefinite relaxation to find a performance upper bound. The problem obtained for TDMA is optimally solved by leveraging the time-selective nature of the IRS. Furthermore, for all three multiple access schemes, low-complexity suboptimal algorithms are developed by exploiting alternating optimization and successive convex approximation techniques, where a local region optimization method is applied for optimizing the IRS deployment location. Numerical results are provided to show that: 1) near-optimal performance can be achieved by the proposed suboptimal algorithms; 2) asymmetric and symmetric IRS deployment strategies are preferable for NOMA and FDMA/TDMA, respectively; 3) the performance gain achieved with IRS can be significantly improved by optimizing the deployment location.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor mance, in this paper, we adopt a deep transfer learning (DTL) approach to implicitly extract the features of communication channel and directly recover tag symbols. Inspired by the powerful capability of convolutional neural networks (CNN) in exploring the features of data in a matrix form, we design a novel covariance matrix aware neural network (CMNet)-based detection scheme to facilitate DTL for tag signal detection, which consists of offline learning, transfer learning, and online detection. Specifically, a CMNet-based likelihood ratio test (CMNet-LRT) is derived based on the minimum error probability (MEP) criterion. Taking advantage of the outstanding performance of DTL in transferring knowledge with only a few training data, the proposed scheme can adaptively fine-tune the detector for different channel environments to further improve the detection performance. Finally, extensive simulation results demonstrate that the BER performance of the proposed method is comparable to that of the optimal detection method with perfect CSI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا