ﻻ يوجد ملخص باللغة العربية
In open domain table-to-text generation, we notice that the unfaithful generation usually contains hallucinated content which can not be aligned to any input table record. We thus try to evaluate the generation faithfulness with two entity-centric metrics: table record coverage and the ratio of hallucinated entities in text, both of which are shown to have strong agreement with human judgements. Then based on these metrics, we quantitatively analyze the correlation between training data quality and generation fidelity which indicates the potential usage of entity information in faithful generation. Motivated by these findings, we propose two methods for faithful generation: 1) augmented training by incorporating the auxiliary entity information, including both an augmented plan-based model and an unsupervised model and 2) training instance selection based on faithfulness ranking. We show these approaches improve generation fidelity in both full dataset setting and few shot learning settings by both automatic and human evaluations.
Table-to-text generation refers to generating a descriptive text from a key-value table. Traditional autoregressive methods, though can generate text with high fluency, suffer from low coverage and poor faithfulness problems. To mitigate these proble
We present DART, an open domain structured DAta Record to Text generation dataset with over 82k instances (DARTs). Data-to-Text annotations can be a costly process, especially when dealing with tables which are the major source of structured data and
In this paper, we present a generative model to generate a natural language sentence describing a table region, e.g., a row. The model maps a row from a table to a continuous vector and then generates a natural language sentence by leveraging the sem
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference,
Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in