ﻻ يوجد ملخص باللغة العربية
We report the ultrafast optical pump-probe spectroscopy measurements on the recently discovered quantum critical ferromagnet CeRh$_6$Ge$_4$. Our experimental results reveal the two-stage development of the hybridization between localized $f$ moments and conduction electrons with lowering temperature, as evidenced by (1) the presence of hybridization fluctuation for temperatures from $sim$85 K ($T^*$) to $sim$140 K ($T^dagger$), and (2) the emergence of collective hybridization below the coherence temperature, $T^*$, marked by the opening of an indirect gap of 2$Delta$ $approx$12 meV. We also observe three coherent phonon modes being softened anomalously below $T^*$, reflecting directly their coupling with the emergent coherent heavy electrons. Our findings establish the universal nature of the hybridization process in different heavy fermion systems.
We investigate the quasiparticle dynamics in the prototype heavy fermion CeCoIn$_5$ using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before full establishment of the
In heavy fermions the relaxation dynamics of photoexcited carriers has been found to be governed by the low energy indirect gap, E$_{g}$, resulting from hybridization between localized moments and conduction band electrons. Here, carrier relaxation d
Recently, the switching between the different charge-ordered phases of 1T-TaS2 has been probed by ultrafast techniques, revealing unexpected phenomena such as hidden metastable states and peculiar photoexcited charge patterns. Here, we apply broadban
We investigate the thermal-driven charge density wave (CDW) transition of two cubic superconducting intermetallic systems Lu(Pt1-xPdx)2In and (Sr1-xCax)3Ir4Sn13 by means of x-ray diffraction technique. A detailed analysis of the CDW modulation superl
Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new order through complex microscopic interactions that do not occu