ﻻ يوجد ملخص باللغة العربية
Aspect Sentiment Triplet Extraction (ASTE) aims to extract triplets from a sentence, including target entities, associated sentiment polarities, and opinion spans which rationalize the polarities. Existing methods are short on building correlation between target-opinion pairs, and neglect the mutual interference among different sentiment triplets. To address these issues, we propose a novel two-stage method which enhances the correlation between targets and opinions: at stage one, we extract targets and opinions through sequence tagging; then we insert a group of artificial tags named Perceivable Pair, which indicate the span of the target and the opinion, into the sequence to establish correlation for each candidate target-opinion pair. Meanwhile, we reduce the mutual interference between triplets by restricting tokens attention field. Finally, the polarity is identified according to the representation of the Perceivable Pair. We conduct experiments on four datasets, and the experimental results show that our model outperforms the state-of-the-art methods.
Aspect Sentiment Triplet Extraction (ASTE) aims to extract aspect term, sentiment and opinion term triplets from sentences and tries to provide a complete solution for aspect-based sentiment analysis (ABSA). However, some triplets extracted by ASTE a
Aspect-level sentiment classification (ALSC) and aspect oriented opinion words extraction (AOWE) are two highly relevant aspect-based sentiment analysis (ABSA) subtasks. They respectively aim to detect the sentiment polarity and extract the correspon
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interp
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works
Aspect Sentiment Triplet Extraction (ASTE) aims to recognize targets, their sentiment polarities and opinions explaining the sentiment from a sentence. ASTE could be naturally divided into 3 atom subtasks, namely target detection, opinion detection a