ﻻ يوجد ملخص باللغة العربية
We propose the adversarially robust kernel smoothing (ARKS) algorithm, combining kernel smoothing, robust optimization, and adversarial training for robust learning. Our methods are motivated by the convex analysis perspective of distributionally robust optimization based on probability metrics, such as the Wasserstein distance and the maximum mean discrepancy. We adapt the integral operator using supremal convolution in convex analysis to form a novel function majorant used for enforcing robustness. Our method is simple in form and applies to general loss functions and machine learning models. Furthermore, we report experiments with general machine learning models, such as deep neural networks, to demonstrate that ARKS performs competitively with the state-of-the-art methods based on the Wasserstein distance.
Adversarial training (AT) has become the de-facto standard to obtain models robust against adversarial examples. However, AT exhibits severe robust overfitting: cross-entropy loss on adversarial examples, so-called robust loss, decreases continuously
Transfer learning, in which a network is trained on one task and re-purposed on another, is often used to produce neural network classifiers when data is scarce or full-scale training is too costly. When the goal is to produce a model that is not onl
Even though deep learning has shown unmatched performance on various tasks, neural networks have been shown to be vulnerable to small adversarial perturbations of the input that lead to significant performance degradation. In this work we extend the
As machine learning (ML) systems become pervasive, safeguarding their security is critical. Recent work has demonstrated that motivated adversaries could add adversarial perturbations to the test data to mislead ML systems. So far, most research has
It is common practice in deep learning to use overparameterized networks and train for as long as possible; there are numerous studies that show, both theoretically and empirically, that such practices surprisingly do not unduly harm the generalizati