ﻻ يوجد ملخص باللغة العربية
This paper gives new methods of constructing {it symmetric self-dual codes} over a finite field $GF(q)$ where $q$ is a power of an odd prime. These methods are motivated by the well-known Pless symmetry codes and quadratic double circulant codes. Using these methods, we construct an amount of symmetric self-dual codes over $GF(11)$, $GF(19)$, and $GF(23)$ of every length less than 42. We also find 153 {it new} self-dual codes up to equivalence: they are $[32, 16, 12]$, $[36, 18, 13]$, and $[40, 20,14]$ codes over $GF(11)$, $[36, 18, 14]$ and $[40, 20, 15]$ codes over $GF(19)$, and $[32, 16, 12]$, $[36, 18, 14]$, and $[40, 20, 15]$ codes over $GF(23)$. They all have new parameters with respect to self-dual codes. Consequently, we improve bounds on the highest minimum distance of self-dual codes, which have not been significantly updated for almost two decades.
We introduce a consistent and efficient method to construct self-dual codes over $GF(q)$ with symmetric generator matrices from a self-dual code over $GF(q)$ of smaller length where $q equiv 1 pmod 4$. Using this method, we improve the best-known min
BCH codes are an interesting class of cyclic codes due to their efficient encoding and decoding algorithms. In many cases, BCH codes are the best linear codes. However, the dimension and minimum distance of BCH codes have been seldom solved. Until no
Four recursive constructions of permutation polynomials over $gf(q^2)$ with those over $gf(q)$ are developed and applied to a few famous classes of permutation polynomials. They produce infinitely many new permutation polynomials over $gf(q^{2^ell})$
In this paper, we produce new classes of MDS self-dual codes via (extended) generalized Reed-Solomon codes over finite fields of odd characteristic. Among our constructions, there are many MDS self-dual codes with new parameters which have never been
In this work we describe an efficient implementation of a hierarchy of algorithms for the decomposition of dense matrices over the field with two elements (GF(2)). Matrix decomposition is an essential building block for solving dense systems of linea