ﻻ يوجد ملخص باللغة العربية
The proposed electron-ion collider has a rich physics program to study the internal structure of protons and heavy nuclei. This program will impose strict requirements on detector design. This paper explores how these requirements can be satisfied using an all-silicon tracking detector, by consideration of three representative probes: heavy flavor hadrons, jets, and exclusive vector mesons.
Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdat
The PHENIX collaboration presents here a concept for a detector at a future Electron Ion Collider (EIC). The EIC detector proposed here, referred to as ePHENIX, will have excellent performance for a broad range of exciting EIC physics measurements, p
A future Electron-Ion Collider (EIC) will deliver luminosities of $10^{33} - 10^{34}$ cm$^{-2}$s$^{-1}$ for collisions of polarized electrons and protons and heavy ions over a wide range of center-of-mass energies (40 $mathrm{GeV}$ to 145 $mathrm{GeV
A simulation study of measurements of neutral current structure functions of the nucleon at the future high-energy and high-luminosity polarized electron-ion collider (EIC) is presented. A new series of $gamma-Z$ interference structure functions, $F_
The feasibility for a measurement of the exclusive production of a real photon, a process although known as Deeply Virtual Compton Scattering (DVCS) at an Electron Ion Collider (EIC) has been explored. DVCS is universally believed to be a golden meas