ﻻ يوجد ملخص باللغة العربية
For posets $P$ and $Q$, extremal and saturation problems about weak and strong $P$-free subposets of $Q$ have been studied mostly in the case $Q$ is the Boolean poset $Q_n$, the poset of all subsets of an $n$-element set ordered by inclusion. In this paper, we study some instances of the problem with $Q$ being the grid, and its connections to the Boolean case and to the forbidden submatrix problem.
Upper bounds to the size of a family of subsets of an n-element set that avoids certain configurations are proved. These forbidden configurations can be described by inclusion patterns and some sets having the same size. Our results are closely relat
A family of permutations $mathcal{F} subset S_{n}$ is said to be $t$-intersecting if any two permutations in $mathcal{F}$ agree on at least $t$ points. It is said to be $(t-1)$-intersection-free if no two permutations in $mathcal{F}$ agree on exactly
Tropical curves in $mathbb{R}^2$ correspond to metric planar graphs but not all planar graphs arise in this way. We describe several new classes of graphs which cannot occur. For instance, this yields a full combinatorial characterization of the tropically planar graphs of genus at most five.
In this note, we fix a graph $H$ and ask into how many vertices can each vertex of a clique of size $n$ can be split such that the resulting graph is $H$-free. Formally: A graph is an $(n,k)$-graph if its vertex sets is a pairwise disjoint union of $
Determining the maximum size of a $t$-intersecting code in $[m]^n$ was a longstanding open problem of Frankl and Furedi, solved independently by Ahlswede and Khachatrian and by Frankl and Tokushige. We extend their result to the setting of forbidden