ترغب بنشر مسار تعليمي؟ اضغط هنا

Nebular Emission from Lanthanide-rich Ejecta of Neutron Star Merger

84   0   0.0 ( 0 )
 نشر من قبل Kenta Hotokezaka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nebular phase of lanthanide-rich ejecta of a neutron star merger (NSM) is studied by using a one-zone model, in which the atomic properties are represented by a single species, neodymium (Nd). Under the assumption that beta-decay of r-process nuclei is the heat and ionization source, we solve the ionization and thermal balance of the ejecta under non-local thermodynamic equilibrium. The atomic data including energy levels, radiative transition rates, collision strengths, and recombination rate coefficients, are obtained by using atomic structure codes, GRASP2K and HULLAC. We find that both permitted and forbidden lines roughly equally contribute to the cooling rate of Nd II and Nd III at the nebular temperatures. We show that the kinetic temperature and ionization degree increase with time in the early stage of the nebular phase while these quantities become approximately independent of time after the thermalization break of the heating rate because the processes relevant to the ionization and thermalization balance are attributed to two-body collision between electrons and ions at later times. As a result, in spite of the rapid decline of the luminosity, the shape of the emergent spectrum does not change significantly with time after the break. We show that the emission-line nebular spectrum of the pure Nd ejecta consists of a broad structure from $0.5,mu m$ to $20,mu m$ with two distinct peaks around $1,mu m$ and $10,mu m$.



قيم البحث

اقرأ أيضاً

The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from obse rvations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of r-process-enhanced stars. In this work, we investigate actinide production in the dynamical ejecta of a neutron star merger and explore if varying levels of neutron richness can reproduce the actinide boost. We also investigate the sensitivity of actinide production on nuclear physics properties: fission distribution, beta-decay, and mass model. For most cases, the actinides are over-produced in our models if the initial conditions are sufficiently neutron-rich for fission cycling. We find that actinide production can be so robust in the dynamical ejecta that an additional lanthanide-rich, actinide-poor component is necessary in order to match observations of actinide-boost stars. We present a simple actinide-dilution model that folds in estimated contributions from two nucleosynthetic sites within a merger event. Our study suggests that while the dynamical ejecta of a neutron star merger is a likely production site for the formation of actinides, a significant contribution from another site or sites (e.g., the neutron star merger accretion disk wind) is required to explain abundances of r-process-enhanced, metal-poor stars.
We present a simple analytic model, that captures the key features of the emission of radiation from material ejected by the merger of neutron stars (NS), and construct the multi-band and bolometric luminosity light curves of the transient associated with GW170817, AT,2017gfo, using all available data. The UV to IR emission is shown to be consistent with a single $approx0.05$,M$_odot$ component ejecta, with a power-law velocity distribution between $approx 0.1,c$ and $>0.3,c$, a low opacity, {$kappa<1$,cm$^2$,g$^{-1}$}, and a radioactive energy release rate consistent with an initial $Y_{rm e}<0.4$. The late time spectra require an opacity of $kappa_ uapprox0.1$,cm$^2$,g$^{-1}$ at 1 to $2mu$m. If this opacity is provided entirely by Lanthanides, their implied mass fraction is $X_{rm Ln}approx10^{-3}$, approximately 30 times below the value required to account for the solar abundance. The inferred value of $X_{rm Ln}$ is uncertain due to uncertainties in the estimates of IR opacities of heavy elements, which also do not allow the exclusion of a significant contribution to the opacity by other elements (the existence of a slower ejecta rich in Lanthanides, that does not contribute significantly to the luminosity, can also not be ruled out). The existence of a relatively massive, $approx 0.05$,M$_odot$, ejecta with high velocity and low opacity is in tension with the results of numerical simulations of NS mergers.
We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by Fermi/GBM and Integr al/SPI-ACS (GRB170817A). The evolution of the transient light is consistent with predictions for the behaviour of a kilonova/macronova, powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide dominated ejecta, and the much slower evolution in the near-infrared Ks-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the 3rd r-process peak (atomic masses A~195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major - if not the dominant - site of rapid neutron capture nucleosynthesis in the universe.
The radioactive decay of the freshly synthesized $r$-process nuclei ejected in compact binary mergers power optical/infrared macronovae (kilonovae) that follow these events. The light curves depend critically on the energy partition among the differe nt products of the radioactive decay and this plays an important role in estimates of the amount of ejected $r$-process elements from a given observed signal. We study the energy partition and $gamma$-ray emission of the radioactive decay. We show that $20$-$50%$ of the total radioactive energy is released in $gamma$-rays on timescales from hours to a month. The number of emitted $gamma$-rays per unit energy interval has roughly a flat spectrum between a few dozen keV and $1$ MeV so that most of this energy is carried by $sim 1$ MeV $gamma$-rays. However at the peak of macronova emission the optical depth of the $gamma$-rays is $sim 0.02$ and most of the $gamma$-rays escape. The loss of these $gamma$-rays reduces the heat deposition into the ejecta and hence reduces the expected macronova signals if those are lanthanides dominated. This implies that the ejected mass is larger by a factor of $2$-$3$ than what was previously estimated. Spontaneous fission heats up the ejecta and the heating rate can increase if a sufficient amount of transuranic nuclei are synthesized. Direct measurements of these escaping $gamma$-rays may provide the ultimate proof for the macronova mechanisms and an identification of the $r$-process nucleosynthesis sites. However, the chances to detect these signals are slim with current X-ray and $gamma$-ray missions. New detectors, more sensitive by at least a factor of ten, are needed for a realistic detection rate.
116 - Houri Ziaeepour 2019
Gravitational waves from coalescence of a Binary Neutron Star (BNS) and its accompagning short Gamma-Ray Burst GW/GRB~170817A confirmed the presumed origin of these puzzeling transients and opened up the way for relating properties of short GRBs to t hose of their progenitor stars and their surroundings. Here we review an extensive analysis of the prompt gamma-ray and late afterglows of this event. We show that a fraction of polar ejecta from the merger had been accelerated to ultra-relativistic speeds. This structured jet had an initial Lorentz factor of about $260$ in our direction - $mathcal{O}(10^circ)$ from the jets axis - and was a few orders of magnitude less dense than in typical short GRBs. At the time of arrival to circum-burst material the ultra-relativistic jet had a close to Gaussian profile and a Lorentz factor $gtrsim 130$ in its core. It had retained in some extent its internal collimation and coherence, but had extended laterally to create mildly relativistic lobes - a {it cocoon}. External shocks on the far from center inhomogeneous circum-burst material and low density of colliding shells generated slow rising afterglows. The circum-burst material was somehow correlated with the merger and it is possible that it contained recently ejected material from glitching, which had resumed due to the deformation of neutron stars crust by tidal forces in the latest stages of inspiral but well before their merger. By comparing these findings with the results of relativistic MHD simulations and observed gravitational waves we conclude that progenitor neutron stars were old, had close masses and highly reduced magnetic fields. In addition, they probably had oppositely directed spins due to the encounter and gravitational interaction with other stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا