ترغب بنشر مسار تعليمي؟ اضغط هنا

Browselite: A Private Data Saving Solution for the Web

112   0   0.0 ( 0 )
 نشر من قبل Conor Kelton
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The median webpage has increased in size by more than 80% in the last 4 years. This extra complexity allows for a rich browsing experience, but it hurts the majority of mobile users which still pay for their traffic. This has motivated several data-saving solutions, which aim at reducing the complexity of webpages by transforming their content. Despite each method being unique, they either reduce user privacy by further centralizing web traffic through data-saving middleboxes or introduce web compatibility (Webcompat) issues by removing content that breaks pages in unpredictable ways. In this paper, we argue that data-saving is still possible without impacting either users privacy or Webcompat. Our main observation is that Web images make up a large portion of Web traffic and have negligible impact on Webcompat. To this end we make two main contributions. First, we quantify the potential savings that image manipulation, such as dimension resizing, quality compression, and transcoding, enables at large scale: 300 landing and 880 internal pages. Next, we design and build Browselite, an entirely client-side tool that achieves such data savings through opportunistically instrumenting existing server-side tooling to perform image compression, while simultaneously reducing the total amount of image data fetched. The effect of Browselite on the user experience is quantified using standard page load metrics and a real user study of over 200 users across 50 optimized web pages. Browselite allows for similar savings to middlebox approaches, while offering additional security, privacy, and Webcompat guarantees.



قيم البحث

اقرأ أيضاً

Qubit transmission protocols are presently point-to-point, and thus restrictive in their functionality. A quantum router is necessary for the quantum Internet to become a reality. We present a quantum router design based on teleportation, as well as mechanisms for entangled pair management. The prototype was validated using a quantum simulator.
Content replication to many destinations is a common use case in the Internet of Things (IoT). The deployment of IP multicast has proven inefficient, though, due to its lack of layer-2 support by common IoT radio technologies and its synchronous end- to-end transmission, which is highly susceptible to interference. Information-centric networking (ICN) introduced hop-wise multi-party dissemination of cacheable content, which has proven valuable in particular for low-power lossy networking regimes. Even NDN, however, the most prominent ICN protocol, suffers from a lack of deployment. In this paper, we explore how multiparty content distribution in an information-centric Web of Things (WoT) can be built on CoAP. We augment the CoAP proxy by request aggregation and response replication functions, which together with proxy caches enable asynchronous group communication. In a further step, we integrate content object security with OSCORE into the CoAP multicast proxy system, which enables ubiquitous caching of certified authentic content. In our evaluation, we compare NDN with different deployment models of CoAP, including our data-centric approach in realistic testbed experiments. Our findings indicate that multiparty content distribution based on CoAP proxies performs equally well as NDN, while remaining fully compatible with the established IoT protocol world of CoAP on the Internet.
Wireless Sensor Networks research and demand are now in full expansion, since people came to understand these are the key to a large number of issues in industry, commerce, home automation, healthcare, agriculture and environment, monitoring, public safety etc. One of the most challenging research problems in sensor networks research is power awareness and power-saving techniques. In this masters thesis, we have studied one particular power-saving technique, i.e. frequency scaling. In particular, we analysed the close relationship between clock frequencies in a microcontroller and several types of constraints imposed on these frequencies, e.g. by other components of the microcontroller, by protocol specifications, by external factors etc. Among these constraints, we were especially interested in the ones imposed by the timer service and by the serial ports transmission rates. Our efforts resulted in a microcontroller configuration management tool which aims at assisting application programmers in choosing microcontroller configurations, in function of the particular needs and constraints of their application.
Blockchain is increasingly being used to provide a distributed, secure, trusted, and private framework for energy trading in smart grids. However, existing solutions suffer from lack of privacy, processing and packet overheads, and reliance on Truste d Third Parties (TTP). To address these challenges, we propose a Secure Private Blockchain-based (SPB) framework. SPB enables the energy producers and consumers to directly negotiate the energy price. To reduce the associated packet overhead, we propose a routing method which routes packets based on the destination Public Key (PK). SPB eliminates the need for TTP by introducing atomic meta-transactions. The two transactions that form a meta-transaction are visible to the blockchain participants only after both of them are generated. Thus, if one of the participants does not commit to its tasks in a pre-defined time, then the energy trade expires and the corresponding transaction is treated as invalid. The smart meter of the consumer confirms receipt of energy by generating an Energy Receipt Confirmation (ERC). To verify that the ERC is generated by a genuine smart meter, SPB supports authentication of anonymous smart meters which in turn enhances the privacy of the meter owner. Qualitative security analysis shows the resilience of SPB against a range of attacks.
Distributed Virtual Private Networks (dVPNs) are new VPN solutions aiming to solve the trust-privacy concern of a VPNs central authority by leveraging a distributed architecture. In this paper, we first review the existing dVPN ecosystem and debate o n its privacy requirements. Then, we present VPN0, a dVPN with strong privacy guarantees and minimal performance impact on its users. VPN0 guarantees that a dVPN node only carries traffic it has whitelisted, without revealing its whitelist or knowing the traffic it tunnels. This is achieved via three main innovations. First, an attestation mechanism which leverages TLS to certify a user visit to a specific domain. Second, a zero knowledge proof to certify that some incoming traffic is authorized, e.g., falls in a nodes whitelist, without disclosing the target domain. Third, a dynamic chain of VPN tunnels to both increase privacy and guarantee service continuation while traffic certification is in place. The paper demonstrates VPN0 functioning when integrated with several production systems, namely BitTorrent DHT and ProtonVPN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا