ﻻ يوجد ملخص باللغة العربية
We present a novel technique to study Type Ia supernovae by constraining surviving companions of historical extragalactic SN by combining archival photographic plates and Hubble Space Telescope imaging. We demonstrate this technique for Supernova 1972E, the nearest known SN Ia in over 125 years. Some models of Type Ia supernovae describe a white dwarf with a non-degenerate companion that donates enough mass to trigger thermonuclear detonation. Hydrodynamic simulations and stellar evolution models show that these donor stars survive the explosion, and show increased luminosity for at least a thousand years. Thus, late-time observations of the exact location of a supernova after its ejecta have faded can constrain the presence of a surviving donor star and progenitor models. We find the explosion site of SN 1972E by analyzing 17 digitized photographic plates taken with the European Southern Observatory 1m Schmidt and 1 plate taken with the Cerro Tololo Inter-American Observatory 1.5m telescope from 1972-1974. Using the textit{Gaia} eDR3 catalog to determine Supernova 1972Es equatorial coordinates yields: $alpha$ = 13$^h$ 39$^m$ 52.708$^s$ $pm$ 0.004$^s$ and $delta$ = $-$31degree 40 8farcs97 $pm$ 0farcs04 (ICRS). In 2005, HST/ACS imaged NGC 5253, the host galaxy of SN 1972E, with the $F435W$, $F555W$, and $F814W$ filters covering the explosion site. The nearest source detected is offset by 3.0 times our positional precision, and is inconsistent with the colors expected of a surviving donor star. Thus, the 2005 HST observation rules out all Helium-star companion models, and the most luminous main-sequence companion model currently in the literature. The remaining main-sequence companion models could be tested with deeper HST imaging.
One of the largest surprises from the LIGO results regarding the first gravitational wave detection (GW 150914) was the fact the black holes (BHs) were heavy, of order 30 - 40 solar masses. The most promising explanation for this obesity is that the
We present Hubble Space Telescope observations and photometric measurements of the Type Ia supernova (SN Ia) SN 2013aa 1500 days after explosion. At this epoch, the luminosity is primarily dictated by the amounts of radioactive ${}^{57}textrm{Co}$ an
SN 2016gkg is a nearby Type IIb supernova discovered shortly after explosion. Like several other Type IIb events with early-time data, SN 2016gkg displays a double-peaked light curve, with the first peak associated with the cooling of a low-mass exte
CK Vulpeculae, which erupted in AD 1670-71, was long considered to be a nova outburst; however, recent observations have required that alternative scenarios be considered. Long slit infrared spectroscopy of a forbidden line of iron reported here has
We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2