ترغب بنشر مسار تعليمي؟ اضغط هنا

Overview of the TREC 2020 deep learning track

153   0   0.0 ( 0 )
 نشر من قبل Bhaskar Mitra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second year of the TREC Deep Learning Track, with the goal of studying ad hoc ranking in the large training data regime. We again have a document retrieval task and a passage retrieval task, each with hundreds of thousands of human-labeled training queries. We evaluate using single-shot TREC-style evaluation, to give us a picture of which ranking methods work best when large data is available, with much more comprehensive relevance labeling on the small number of test queries. This year we have further evidence that rankers with BERT-style pretraining outperform other rankers in the large data regime.



قيم البحث

اقرأ أيضاً

The Podcast Track is new at the Text Retrieval Conference (TREC) in 2020. The podcast track was designed to encourage research into podcasts in the information retrieval and NLP research communities. The track consisted of two shared tasks: segment r etrieval and summarization, both based on a dataset of over 100,000 podcast episodes (metadata, audio, and automatic transcripts) which was released concurrently with the track. The track generated considerable interest, attracted hundreds of new registrations to TREC and fifteen teams, mostly disjoint between search and summarization, made final submissions for assessment. Deep learning was the dominant experimental approach for both search experiments and summarization. This paper gives an overview of the tasks and the results of the participants experiments. The track will return to TREC 2021 with the same two tasks, incorporating slight modifications in response to participant feedback.
The Deep Learning Track is a new track for TREC 2019, with the goal of studying ad hoc ranking in a large data regime. It is the first track with large human-labeled training sets, introducing two sets corresponding to two tasks, each with rigorous T REC-style blind evaluation and reusable test sets. The document retrieval task has a corpus of 3.2 million documents with 367 thousand training queries, for which we generate a reusable test set of 43 queries. The passage retrieval task has a corpus of 8.8 million passages with 503 thousand training queries, for which we generate a reusable test set of 43 queries. This year 15 groups submitted a total of 75 runs, using various combinations of deep learning, transfer learning and traditional IR ranking methods. Deep learning runs significantly outperformed traditional IR runs. Possible explanations for this result are that we introduced large training data and we included deep models trained on such data in our judging pools, whereas some past studies did not have such training data or pooling.
We benchmark Conformer-Kernel models under the strict blind evaluation setting of the TREC 2020 Deep Learning track. In particular, we study the impact of incorporating: (i) Explicit term matching to complement matching based on learned representatio ns (i.e., the Duet principle), (ii) query term independence (i.e., the QTI assumption) to scale the model to the full retrieval setting, and (iii) the ORCAS click data as an additional document description field. We find evidence which supports that all three aforementioned strategies can lead to improved retrieval quality.
The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This pap er supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.
In this study, we address the challenges in developing a deep learning-based automatic patent citation recommendation system. Although deep learning-based recommendation systems have exhibited outstanding performance in various domains (such as movie s, products, and paper citations), their validity in patent citations has not been investigated, owing to the lack of a freely available high-quality dataset and relevant benchmark model. To solve these problems, we present a novel dataset called PatentNet that includes textual information and metadata for approximately 110,000 patents from the Google Big Query service. Further, we propose strong benchmark models considering the similarity of textual information and metadata (such as cooperative patent classification code). Compared with existing recommendation methods, the proposed benchmark method achieved a mean reciprocal rank of 0.2377 on the test set, whereas the existing state-of-the-art recommendation method achieved 0.2073.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا