ﻻ يوجد ملخص باللغة العربية
Global warming leads the world to think of a different way of transportation: avoiding internal combustion engines and electrifying the transportation sector. With a high penetration of electric vehicle (EV) charging stations on an existing power distribution network, the impact may be consistent. The loads of the fast-charging stations would potentially result in increased peak load demand, reduced reserve margins, voltage instability, and reliability problems. The degrading performance of the power system due to the negative impact of the EV charging stations can even lead to penalties to be paid by the distribution system operator (DSO). This paper: i) investigates the impact of the ac{ev} charging station on the distribution network for what concerns voltage drop on MV feeders and loading of transformers in primary substations, and ii) proposes a mitigation mechanism. A realistic typical Italian grid has been used to assess the impact of EV charging stations and to validate the mitigation mechanism.
A power system electromechanical wave propagates from the disturbance location to the rest of system, influencing various types of protections. In addition, since more power-electronics-interfaced generation and energy storage devices are being integ
Even with state-of-the-art defense mechanisms, cyberattacks in the electric power distribution sector are commonplace. Particularly alarming are load-altering (demand-side) cyberattacks launched through high-wattage assets, which are not continuously
The frequent occurrences of cascading failures in power grids have been receiving continuous attention in recent years. An urgent task for us is to understand the cascading failure vulnerability of power grids against various kinds of attacks. We con
Sensing and measurement systems are quintessential to the safe and reliable operation of electric power grids. Their strategic placement is of ultimate importance because it is not economically viable to install measurement systems on every node and
In modern power grids, a local failure or attack can trigger catastrophic cascading failures, which make it challenging to assess the attack vulnerability of power grids. In this Brief, we define the $K$-link attack problem and study the attack vulne