ﻻ يوجد ملخص باللغة العربية
We have measured the angular dependence of ferromagnetic resonance (FMR) spectra for Fibonacci-distorted, Kagome artificial spin ice (ASI). The number of strong modes in the FMR spectra depend on the orientation of the applied DC magnetic field. In addition, discontinuities observed in the FMR field-frequency dispersion curves also depend on DC field orientation, and signal a multi-step DC magnetization reversal, which is caused by the reduced energy degeneracy of Fibonacci-distorted vertices. The results suggest the orientation of applied magnetic field and severity of Fibonacci distortion constitute control variables for FMR modes and multi-step reversal in future magnonic devices and magnetic switching systems.
We present results of ferromagnetic resonance (FMR) experiments and micromagnetic simulations for a distorted, 2D Kagome artificial spin ice. The distorted structure is created by continuously modulating the 2D primitive lattice translation vectors o
We present the dynamic response of a connected Kagome artificial spin ice with emphasis on the effect of the vertex magnetization configuration on the mode characteristics. We use broadband ferromagnetic resonance (FMR) spectroscopy and micromagnetic
We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane an
Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich s
We report broadband spin-wave spectroscopy on kagome artificial spin ice (ASI) made of large arrays of interconnected Ni$_{80}$Fe$_{20}$ nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic mag