ﻻ يوجد ملخص باللغة العربية
It was found that, although isovalent, Rh substituted for Ir in Sr$_2$IrO$_4$ may trap one electron inducing effective hole doping of Ir sites. Transport and thermoelectric measurements on Sr$_2$Ir$_{1-x}$Rh$_x$O$_4$ single crystals presented here reveal the existence of an electron-like contribution to transport, in addition to the hole-doped one. As no electron band shows up in ARPES measurements, this points to the possibility that this hidden electron may delocalize in disordered clusters.
Layered 5$d$ transition iridium oxides, Sr$_2$(Ir,Rh)O$_4$, are described as unconventional Mott insulators with strong spin-orbit coupling. The undoped compound, Sr$_2$IrO$_4$, is a nearly ideal two-dimensional pseudospin-$1/2$ Heisenberg antiferrom
An anapole state that breaks inversion and time reversal symmetries with preserving translation symmetry of underlying lattice has aroused great interest as a new quantum state, but only a few candidate materials have been reported. Recently, in a sp
Pressure-dependent transport measurements of Ir$_{1-x}$Pt$_x$Te$_2$ are reported. With increasing pressure, the structural phase transition at high temperatures is enhanced while its superconducting transition at low temperatures is suppressed. These
With optical spectroscopy we provide evidence that the insulator-metal transition in Sr$_2$Ir$_{1-x}$Rh$_{x}$O$_{4}$ occurs close to a crossover from the Mott- to the Slater-type. The Mott-gap at $x = 0$ persists to high temperature and evolves witho
The path from a Mott insulating phase to high temperature superconductivity encounters a rich set of unconventional phenomena involving the insulator-to-metal transition (IMT) such as emergent electronic orders and pseudogaps that ultimately affect t