ترغب بنشر مسار تعليمي؟ اضغط هنا

Standard Model Baryon Number Violation Seeded by Black Holes

66   0   0.0 ( 0 )
 نشر من قبل Valerio De Luca
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that black holes with a Schwarzschild radius of the order of the electroweak scale may act as seeds for the baryon number violation within the Standard model via sphaleron transitions. The corresponding rate is faster than the one in the pure vacuum and baryon number violation around black holes can take place during the evolution of the universe after the electroweak phase transition. We show however that this does not pose any threat for a pre-existing baryon asymmetry in the universe.



قيم البحث

اقرأ أيضاً

We investigate Hawking evaporation of a population of primordial black holes (PBHs) prior to Big Bang Nucleosynthesis (BBN) as a mechanism to achieve asymmetric reheating of two sectors coupled solely by gravity. While the visible sector is reheated by the inflaton or a modulus, the dark sector is reheated by PBHs. Compared to inflationary or modular reheating of both sectors, there are two advantages: $(i)$ inflaton or moduli mediated operators that can subsequently thermalize the dark sector with the visible sector are not relevant to the asymmetric reheating process; $(ii)$ the mass and abundance of the PBHs provide parametric control of the thermal history of the dark sector, and in particular the ratio of the temperatures of the two sectors. Asymmetric reheating with PBHs turns out to have a particularly rich dark sector phenomenology, which we explore using a single self-interacting real scalar field in the dark sector as a template. Four thermal histories, involving non-relativistic and relativistic dark matter (DM) at chemical equilibrium, followed by the presence or absence of cannibalism, are explored. These histories are then constrained by the observed relic abundance in the current Universe and the Bullet Cluster. The case where PBHs dominate the energy density of the Universe, and reheat both the visible as well as the dark sectors, is also treated in detail.
A universal mechanism may be responsible for several unresolved cosmic conundra. The sudden drop in the pressure of relativistic matter at $W^{pm}/Z^{0}$ decoupling, the quark--hadron transition and $e^{+}e^{-}$ annihilation enhances the probability of primordial black hole (PBH) formation in the early Universe. Assuming the amplitude of the primordial curvature fluctuations is approximately scale-invariant, this implies a multi-modal PBH mass spectrum with peaks at $10^{-6}$, 1, 30, and $10^{6},M_{odot}$. This suggests a unified PBH scenario which naturally explains the dark matter and recent microlensing observations, the LIGO/Virgo black hole mergers, the correlations in the cosmic infrared and X-ray backgrounds, and the origin of the supermassive black holes in galactic nuclei at high redshift. A distinctive prediction of our model is that LIGO/Virgo should observe black hole mergers in the mass gaps between 2 and $5,M_{odot}$ (where no stellar remnants are expected) and above $65,M_{odot}$ (where pair-instability supernovae occur) and low-mass-ratios in between. Therefore the recent detection of events GW190425, GW190814 and GW190521 with these features is striking confirmation of our prediction and may indicate a primordial origin for the black holes. In this case, the exponential sensitivity of the PBH abundance to the equation of state would offer a unique probe of the QCD phase transition. The detection of PBHs would also offer a novel way to probe the existence of new particles or phase transitions with energy between $1,{rm MeV}$ and $10^{10},$GeV.
Recently, Hutsi et al.[arXiv:2105.09328] critiqued our work that reconsidered the mathematical description of cosmological black holes. In this short comment, we highlight some of the conceptual issues with this criticism in relation to the interpret ation of the quasi-local Misner-Sharp mass, and the fact that our description of cosmological black holes does not impose any assumptions about matter accretion.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation, so their abundance at formation is constrained by the effects of evaporated particles on big bang nucleosynthesis, the cosmic microwave background (CMB), the Galactic and extragalactic $gamma$-ray and cosmic ray backgrounds and the possible generation of stable Planck mass relics. PBHs larger than $sim 10^{15}$ g are subject to a variety of constraints associated with gravitational lensing, dynamical effects, influence on large-scale structure, accretion and gravitational waves. We discuss the constraints on both the initial collapse fraction and the current fraction of the CDM in PBHs at each mass scale but stress that many of the constraints are associated with observational or theoretical uncertainties. We also consider indirect constraints associated with the amplitude of the primordial density fluctuations, such as second-order tensor perturbations and $mu$-distortions arising from the effect of acoustic reheating on the CMB, if PBHs are created from the high-$sigma$ peaks of nearly Gaussian fluctuations. Finally we discuss how the constraints are modified if the PBHs have an extended mass function, this being relevant if PBHs provide some combination of the dark matter, the LIGO/Virgo coalescences and the seeds for cosmic structure. Even if PBHs make a small contribution to the dark matter, they could play an important cosmological role and provide a unique probe of the early Universe.
An observable stochastic background of gravitational waves is generated whenever primordial black holes are created in the early universe thanks to a small-scale enhancement of the curvature perturbation. We calculate the anisotropies and non-Gaussia nity of such stochastic gravitational waves background which receive two contributions, the first at formation time and the second due to propagation effects. The former contribution can be generated if the distribution of the curvature perturbation is characterized by a local and scale-invariant shape of non-Gaussianity. Under such an assumption, we conclude that a sizeable magnitude of anisotropy and non-Gaussianity in the gravitational waves would suggest that primordial black holes may not comply the totality of the dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا