ﻻ يوجد ملخص باللغة العربية
In this paper, we explore optimization-based and data-driven solutions in a reconfigurable intelligent surface (RIS)-aided multi-user mobile edge computing (MEC) system, where the user equipment (UEs) can partially offload their computation tasks to the access point (AP). We aim at maximizing the total completed task-input bits (TCTB) of all UEs with limited energy budgets during a given time slot, through jointly optimizing the RIS reflecting coefficients, the APs receive beamforming vectors, and the UEs energy partition strategies for local computing and offloading. A three-step block coordinate descending (BCD) algorithm is first proposed to effectively solve the non-convex TCTB maximization problem with guaranteed convergence. In order to reduce the computational complexity and facilitate lightweight online implementation of the optimization algorithm, we further construct two deep learning architectures. The first one takes channel state information (CSI) as input, while the second one exploits the UEs locations only for online inference. The two data-driven approaches are trained using data samples generated by the BCD algorithm via supervised learning. Our simulation results reveal a close match between the performance of the optimization-based BCD algorithm and the low-complexity learning-based architectures, all with superior performance to existing schemes in both cases with perfect and imperfect input features. Importantly, the location-only deep learning method is shown to offer a particularly practical and robust solution alleviating the need for CSI estimation and feedback when line-of-sight (LoS) direct links exist between UEs and the AP.
Given the proliferation of wireless sensors and smart mobile devices, an explosive escalation of the volume of data is anticipated. However, restricted by their limited physical sizes and low manufacturing costs, these wireless devices tend to have l
Reconfigurable intelligent surface (RIS) technology has recently emerged as a spectral- and cost-efficient approach for wireless communications systems. However, existing hand-engineered schemes for passive beamforming design and optimization of RIS,
Wireless powered mobile edge computing (WP-MEC) has been recognized as a promising technique to provide both enhanced computational capability and sustainable energy supply to massive low-power wireless devices. However, its energy consumption become
A novel non-orthogonal multiple access (NOMA) based cache-aided mobile edge computing (MEC) framework is proposed. For the purpose of efficiently allocating communication and computation resources to users computation tasks requests, we propose a lon
Reconfigurable intelligent surface (RIS) has emerged as a promising technology for achieving high spectrum and energy efficiency in future wireless communication networks. In this paper, we investigate an RIS-aided single-cell multi-user mobile edge