ترغب بنشر مسار تعليمي؟ اضغط هنا

Block decomposition and statistics arising from permutation tableaux

95   0   0.0 ( 0 )
 نشر من قبل Joanna Na Chen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Joanna N. Chen




اسأل ChatGPT حول البحث

Permutation statistics $wnm$ and $rlm$ are both arising from permutation tableaux. $wnm$ was introduced by Chen and Zhou, which was proved equally distributed with the number of unrestricted rows of a permutation tableau. While $rlm$ is showed by Nadeau equally distributed with the number of $1$s in the first row of a permutation tableau. In this paper, we investigate the joint distribution of $wnm$ and $rlm$. Statistic $(rlm,wnm,rlmin,des,(underline{321}))$ is shown equally distributed with $(rlm,rlmin,wnm,des,(underline{321}))$ on $S_n$. Then the generating function of $(rlm,wnm)$ follows. An involution is constructed to explain the symmetric property of the generating function. Also, we study the triple statistic $(wnm,rlm,asc)$, which is shown to be equally distributed with $(rlmax-1,rlmin,asc)$ as studied by Josuat-Verg$grave{e}$s. The main method we adopt throughout the paper is constructing bijections based on a block decomposition of permutations.



قيم البحث

اقرأ أيضاً

Permutation tableaux were introduced by Steingr{i}msson and Williams. Corteel and Kim defined the sign of a permutation tableau in terms of the number of unrestricted columns. The sign-imbalance of permutation tableaux of length $n$ is the sum of sig ns over permutation tableaux of length $n$. They have btained a formula for the sign-imbalance of permutation tableaux of length $n$ by using generating functions and asked for a combinatorial proof. Moreover, they raised the question of finding a sign-imbalance formula for type $B$ permutation tableaux introduced by Lam and Williams. We define a statistic $ wnm$ over permutations and show that the number of unrestricted columns over permutation tableaux of length $n$ is equally distributed with $ wnm$ over permutations of length $n$. This leads to a combinatorial interpretation of the formula of Corteel and Kim. For type $B$ permutation tableaux, we define the sign of a type $B$ permutation tableau in term of the number of certain rows and columns. On the other hand, we construct a bijection between the type $B$ permutation tableaux of length $n$ and symmetric permutations of length $2n$ and we show that the statistic $ wnm$ over symmetric permutations of length $2n$ is equally distributed with the number of certain rows and columns over type $B$ permutation tableaux of length $n$. Based on this correspondence and an involution on symmetric permutation of length $2n$, we obtain a sign-imbalance formula for type $B$ permutation tableaux.
We define an excedance number for the multi-colored permutation group, i.e. the wreath product of Z_{r_1} x ... x Z_{r_k} with S_n, and calculate its multi-distribution with some natural parameters. We also compute the multi-distribution of the par ameters exc(pi) and fix(pi) over the sets of involutions in the multi-colored permutation group. Using this, we count the number of involutions in this group having a fixed number of excedances and absolute fixed points.
84 - Seung Jin Lee 2019
In 1976, King defined certain tableaux model, called King tableaux in this paper, counting weight multiplicities of irreducible representation of the symplectic group $Sp(2m)$ for a given dominant weight. Since Kashiwara defined crystals, it is an op en problem to provide a crystal structure on King tableaux. In this paper, we present crystal structures on King tableaux and semistandard oscillating tableaux. The semistandard oscillating tableaux naturally appear as $Q$-tableaux in the symplectic version of RSK algorithms. As an application, we discuss Littlewood-Richardson coefficients for $Sp(2m)$ in terms of semistandard oscillating tableaux.
We give a counting formula for the set of rectangular increasing tableaux in terms of generalized Narayana numbers. We define small $m$-Schroder paths and give a bijection between the set of increasing rectangular tableaux and small $m$-Schroder path s, generalizing a result of Pechenik [3]. Using $K$-jeu de taquin promotion, which was defined by Thomas and Yong [10], we give a cyclic sieving phenomenon for the set of increasing hook tableaux.
As shown by Bousquet-Melou--Claesson--Dukes--Kitaev (2010), ascent sequences can be used to encode $({bf2+2})$-free posets. It is known that ascent sequences are enumerated by the Fishburn numbers, which appear as the coefficients of the formal power series $$sum_{m=1}^{infty}prod_{i=1}^m (1-(1-t)^i).$$ In this paper, we present a novel way to recursively decompose ascent sequences, which leads to: (i) a calculation of the Euler--Stirling distribution on ascent sequences, including the numbers of ascents ($asc$), repeated entries $(rep)$, zeros ($zero$) and maximal entries ($max$). In particular, this confirms and extends Dukes and Parviainens conjecture on the equidistribution of $zero$ and $max$. (ii) a far-reaching generalization of the generating function formula for $(asc,zero)$ due to Jelinek. This is accomplished via a bijective proof of the quadruple equidistribution of $(asc,rep,zero,max)$ and $(rep,asc,rmin,zero)$, where $rmin$ denotes the right-to-left minima statistic of ascent sequences. (iii) an extension of a conjecture posed by Levande, which asserts that the pair $(asc,zero)$ on ascent sequences has the same distribution as the pair $(rep,max)$ on $({bf2-1})$-avoiding inversion sequences. This is achieved via a decomposition of $({bf2-1})$-avoiding inversion sequences parallel to that of ascent sequences. This work is motivated by a double Eulerian equidistribution of Foata (1977) and a tempting bi-symmetry conjecture, which asserts that the quadruples $(asc,rep,zero,max)$ and $(rep,asc,max,zero)$ are equidistributed on ascent sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا