ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards reliable and transparent vaccine phase III trials with smart contracts

78   0   0.0 ( 0 )
 نشر من قبل Ivan Sendin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transforming a vaccine concept into a real vaccine product is a complicated process and includes finding suitable antigens and regulatory, technical, and manufacturing obstacles. A relevant issue within this scope is the clinical trial process. Monitoring and ensuring the integrity of trial data using the traditional system is not always feasible. The search for a vaccine against the coronavirus SARS-CoV-2 illustrates this situation. The scientific credibility of findings from several vaccines clinical trials contributed to distorted perceptions concerning the benefits and risks of the drug. This scenario is ideal for applying technologies such as Blockchain and Smart Contracts in healthcare issues. This paper proposes a protocol based on Smart Contracts, named VaccSC, to enable transparency, accounting, and confidentiality to Phase III of vaccine experiments. The protocol was implemented in Solidity language, and results show that the VaccSC enables double-blindness, randomization, and the auditability of clinical data, even in the presence of dishonest participants.



قيم البحث

اقرأ أيضاً

Large commercial buildings are complex cyber-physical systems containing expensive and critical equipment that ensure the safety and comfort of their numerous occupants. Yet occupant and visitor access to spaces and equipment within these buildings a re still managed through unsystematic, inefficient, and human-intensive processes. As a standard practice, long-term building occupants are given access privileges to rooms and equipment based on their organizational roles, while visitors have to be escorted by their hosts. This approach is conservative and inflexible. In this paper, we describe a methodology that can flexibly and securely manage building access privileges for long-term occupants and short-term visitors alike, taking into account the risk associated with accessing each space within the building. Our methodology relies on blockchain smart contracts to describe, grant, audit, and revoke fine-grained permissions for building occupants and visitors, in a decentralized fashion. The smart contracts are specified through a process that leverages the information compiled from Brick and BOT models of the building. We illustrate the proposed method through a typical application scenario in the context of a real office building and argue that it can greatly reduce the administration overhead, while, at the same time, providing fine-grained, auditable access control.
Recent attacks exploiting errors in smart contract code had devastating consequences thereby questioning the benefits of this technology. It is currently highly challenging to fix errors and deploy a patched contract in time. Instant patching is espe cially important since smart contracts are always online due to the distributed nature of blockchain systems. They also manage considerable amounts of assets, which are at risk and often beyond recovery after an attack. Existing solutions to upgrade smart contracts depend on manual and error-prone processes. This paper presents a framework, called EVMPatch, to instantly and automatically patch faulty smart contracts. EVMPatch features a bytecode rewriting engine for the popular Ethereum blockchain, and transparently/automatically rewrites common off-the-shelf contracts to upgradable contracts. The proof-of-concept implementation of EVMPatch automatically hardens smart contracts that are vulnerable to integer over/underflows and access control errors, but can be easily extended to cover more bug classes. Our extensive evaluation on 14,000 real-world (vulnerable) contracts demonstrate that our approach successfully blocks attack transactions launched on these contracts, while keeping the intended functionality of the contract intact. We perform a study with experienced software developers, showing that EVMPatch is practical, and reduces the time for converting a given Solidity smart contract to an upgradable contract by 97.6 %, while ensuring functional equivalence to the original contract.
Despite the high stakes involved in smart contracts, they are often developed in an undisciplined manner, leaving the security and reliability of blockchain transactions at risk. In this paper, we introduce ContraMaster: an oracle-supported dynamic e xploit generation framework for smart contracts. Existing approaches mutate only single transactions; ContraMaster exceeds these by mutating the transaction sequences. ContraMaster uses data-flow, control-flow, and the dynamic contract state to guide its mutations. It then monitors the executions of target contract programs, and validates the results against a general-purpose semantic test oracle to discover vulnerabilities. Being a dynamic technique, it guarantees that each discovered vulnerability is a violation of the test oracle and is able to generate the attack script to exploit this vulnerability. In contrast to rule-based approaches, ContraMaster has not shown any false positives, and it easily generalizes to unknown types of vulnerabilities (e.g., logic errors). We evaluate ContraMaster on 218 vulnerable smart contracts. The experimental results confirm its practical applicability and advantages over the state-of-the-art techniques, and also reveal three new types of attacks.
Currently, blockchain proposals are being adopted to solve security issues, such as data integrity, resilience, and non-repudiation. To improve certain aspects, e.g., energy consumption and latency, of traditional blockchains, different architectures , algorithms, and data management methods have been recently proposed. For example, appendable-block blockchain uses a different data structure designed to reduce latency in block and transaction insertion. It is especially applicable in domains such as Internet of Things (IoT), where both latency and energy are key concerns. However, the lack of some features available to other blockchains, such as Smart Contracts, limits the application of this model. To solve this, in this work, we propose the use of Smart Contracts in appendable-block blockchain through a new model called context-based appendable-block blockchain. This model also allows the execution of multiple smart contracts in parallel, featuring high performance in parallel computing scenarios. Furthermore, we present an implementation for the context-based appendable-block blockchain using an Ethereum Virtual Machine (EVM). Finally, we execute this implementation in four different testbed. The results demonstrated a performance improvement for parallel processing of smart contracts when using the proposed model.
We investigate a family of bugs in blockchain-based smart contracts, which we call event-ordering (or EO) bugs. These bugs are intimately related to the dynamic ordering of contract events, i.e., calls of its functions on the blockchain, and enable p otential exploits of millions of USD worth of Ether. Known examples of such bugs and prior techniques to detect them have been restricted to a small number of event orderings, typicall 1 or 2. Our work provides a new formulation of this general class of EO bugs as finding concurrency properties arising in long permutations of such events. The technical challenge in detecting our formulation of EO bugs is the inherent combinatorial blowup in path and state space analysis, even for simple contracts. We propose the first use of partial-order reduction techniques, using happen-before relations extracted automatically for contracts, along with several other optimizations built on a dynamic symbolic execution technique. We build an automatic tool called ETHRACER that requires no hints from users and runs directly on Ethereum bytecode. It flags 7-11% of over ten thousand contracts analyzed in roughly 18.5 minutes per contract, providing compact event traces that human analysts can run as witnesses. These witnesses are so compact that confirmations require only a few minutes of human effort. Half of the flagged contracts have subtle EO bugs, including in ERC-20 contracts that carry hundreds of millions of dollars worth of Ether. Thus, ETHRACER is effective at detecting a subtle yet dangerous class of bugs which existing tools miss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا