ﻻ يوجد ملخص باللغة العربية
Spin waves in magnetic microresonators are at the core of modern magnonics. Here we demonstrate a new method of tunable excitation of different spin wave modes in magnetic microdisks by using a train of laser pulses coming at a repetition rate higher than the decay rate of spin precession. The microdisks are etched in a transparent bismuth iron garnet film and the light pulses influence the spins nonthermally through the inverse Faraday effect. The high repetition rate of the laser stimulus of 10 GHz establishes an interplay between the spin wave resonances in the frequency and momentum domains. As a result, the excitation efficiency of different spin modes can be tuned by a small variation of the external magnetic field. An additional degree of freedom is provided by scanning the laser spot within the microdisk area. This makes the proposed method for spin wave excitation advantageous for the forthcoming application of magnonics for telecommunication and quantum technologies.
Ionizing 800-nm femtosecond laser pulses propagating in silica glass and in potassium dihydrogen phosphate (KDP) crystal are investigated by means of a unidirectional pulse propagation code. Filamentation in fused silica is compared with the self-cha
The dispersion scan (d-scan) technique has emerged as a simple-to-implement characterization method for ultrashort laser pulses. D-scan traces are intuitive to interpret and retrieval algorithms that are both fast and robust have been developed to ob
In recent years it became possible to align molecules in free space using ultrashort laser pulses. Here we explore two schemes for controlling molecule-surface scattering process, which are based on the laser-induced molecular alignment. In the first
We report the first demonstration of thermally controlled soliton modelocked frequency comb generation in microresonators. By controlling the electric current through heaters integrated with silicon nitride microresonators, we demonstrate a systemati
Kerr soliton frequency comb generation in monolithic microresonators recently attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates with smooth octave-spanning spectra for self-referencing. Such versatile pl