ﻻ يوجد ملخص باللغة العربية
The upcoming Square Kilometre Array (SKA-Low) will map the distribution of neutral hydrogen during reionization, and produce a tremendous amount of 3D tomographic data. These images cubes will be subject to instrumental limitations, such as noise and limited resolution. Here we present SegU-Net, a stable and reliable method for identification of neutral and ionized regions in these images. SegU-Net is a U-Net architecture based convolutional neural network (CNN) for image segmentation. It is capable of segmenting our image data into meaningful features (ionized and neutral regions) with greater accuracy compared to previous methods. We can estimate the true ionization history from our mock observation of SKA with an observation time of 1000 h with more than 87 per cent accuracy. We also show that SegU-Net can be used to recover various topological summary statistics, such as size distributions and Betti numbers, with a relative difference of only a few per cent. These summary statistics characterise the non-Gaussian nature of the reionization process.
We present the prospects of extracting information about the Epoch of Reionization by identifying the remaining neutral regions, referred to as islands, in tomographic observations of the redshifted 21-cm signal. Using simulated data sets we show tha
In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experimen
Contamination from instrumental effects interacting with bright astrophysical sources is the primary impediment to measuring Epoch of Reionization and BAO 21 cm power spectra---an effect called mode-mixing. In this paper we identify four fundamental
We use the results of large-scale simulations of reionization to explore methods for characterizing the topology and sizes of HII regions during reionization. We use four independent methods for characterizing the sizes of ionized regions. Three of t
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power s