ﻻ يوجد ملخص باللغة العربية
Q-learning, which seeks to learn the optimal Q-function of a Markov decision process (MDP) in a model-free fashion, lies at the heart of reinforcement learning. When it comes to the synchronous setting (such that independent samples for all state-action pairs are drawn from a generative model in each iteration), substantial progress has been made recently towards understanding the sample efficiency of Q-learning. Take a $gamma$-discounted infinite-horizon MDP with state space $mathcal{S}$ and action space $mathcal{A}$: to yield an entrywise $varepsilon$-accurate estimate of the optimal Q-function, state-of-the-art theory for Q-learning proves that a sample size on the order of $frac{|mathcal{S}||mathcal{A}|}{(1-gamma)^5varepsilon^{2}}$ is sufficient, which, however, fails to match with the existing minimax lower bound. This gives rise to natural questions: what is the sharp sample complexity of Q-learning? Is Q-learning provably sub-optimal? In this work, we settle these questions by (1) demonstrating that the sample complexity of Q-learning is at most on the order of $frac{|mathcal{S}||mathcal{A}|}{(1-gamma)^4varepsilon^2}$ (up to some log factor) for any $0<varepsilon <1$, and (2) developing a matching lower bound to confirm the sharpness of our result. Our findings unveil both the effectiveness and limitation of Q-learning: its sample complexity matches that of speedy Q-learning without requiring extra computation and storage, albeit still being considerably higher than the minimax lower bound.
Given a task of predicting $Y$ from $X$, a loss function $L$, and a set of probability distributions $Gamma$ on $(X,Y)$, what is the optimal decision rule minimizing the worst-case expected loss over $Gamma$? In this paper, we address this question b
$ ewcommand{eps}{varepsilon} $In learning theory, the VC dimension of a concept class $C$ is the most common way to measure its richness. In the PAC model $$ ThetaBig(frac{d}{eps} + frac{log(1/delta)}{eps}Big) $$ examples are necessary and sufficien
Here we propose a general theoretical method for analyzing the risk bound in the presence of adversaries. Specifically, we try to fit the adversarial learning problem into the minimax framework. We first show that the original adversarial learning pr
We provide high probability finite sample complexity guarantees for hidden non-parametric structure learning of tree-shaped graphical models, whose hidden and observable nodes are discrete random variables with either finite or countable alphabets. W
We address the problem of model selection for the finite horizon episodic Reinforcement Learning (RL) problem where the transition kernel $P^*$ belongs to a family of models $mathcal{P}^*$ with finite metric entropy. In the model selection framework,