In the present work we study Hinode/EIS observations of an active region taken before, during and after a small C2.0 flare in order to monitor the evolution of the magnetic field evolution and its relation to the flare event. We find that while the flare left the active region itself unaltered, the event included a large Magnetic Field Enhancement (MFE), which consisted of a large increase of the magnetic field to strengths just short of 500~G in a rather small region where no magnetic field was measured before the flare. This MFE is observed during the impulsive phase of the flare at the footpoints of flare loops, its magnetic energy is sufficient to power the radiative losses of the entire flare, and has completely dissipated after the flare. We argue that the MFE might occur at the location of the reconnection event triggering the flare, and note that it formed within 22 minutes of the flare start (as given by the EIS raster return time). These results open the door to a new line of studies aimed at determining whether MFEs 1) can be flare precursor events, 2) can be used for Space Weather forecasts; and 3) what advance warning time they could allow; as well as to explore which physical processes lead to their formation and dissipation, whether such processes are the same in both long-duration and impulsive flares, and whether they can be predicted by theoretical models.