ﻻ يوجد ملخص باللغة العربية
Strongly correlated materials that exhibit an insulator-metal transition are key candidates in the search for new computing platforms. Understanding the pathways and timescales underlying the electrically-driven insulator-metal transition is crucial for uncovering the fundamental limits of device operation. Using stroboscopic electron diffraction, we perform synchronized time-resolved measurements of atomic motions and electronic transport in operating vanadium dioxide switches. We discover an electrically-triggered, isostructural state that forms transiently on microsecond timescales, stabilized by local heterogeneities and interfacial interactions between the equilibrium phases. This metastable phase bears striking similarity to that formed under photoexcitation within picoseconds, suggesting a universal transformation pathway across eight orders of magnitude of timescale. Our results establish a new route for uncovering non-equilibrium and metastable phases in correlated materials, and open avenues for engineering novel dynamical behavior in nanoelectronics.
In metal nanoparticles (NPs) supracrystals, the metallic core provides some key properties, e.g. magnetization, plasmonic response or conductivity, with the ligand molecules giving rise to others like solubility, assembly or interaction with biomolec
We characterize the topological insulator Bi$_2$Se$_3$ using time- and angle- resolved photoemission spectroscopy. By employing two-photon photoemission, a complete picture of the unoccupied electronic structure from the Fermi level up to the vacuum
Ultrafast time-resolved differential reflectivity of Bi2Se3 crystals is studied using optical pump-probe spectroscopy. Three distinct relaxation processes are found to contribute to the initial transient reflectivity changes. The deduced relaxation t
WTe2 Weyl semimetal hosts the natural broken inversion symmetry and strong spin orbit coupling, making it promising for exotic spin/valley dynamics within a picosecond timescale. Here, we unveil an anisotropic ultrafast spin/valley dynamics in centim
Traditional electronic devices are well-known to improve in speed and energy-efficiency as their dimensions are reduced to the nanoscale. However, this scaling behavior remains unclear for nonlinear dynamical circuit elements, such as Mott neuron-lik