ﻻ يوجد ملخص باللغة العربية
The ease of interstellar rocket travel is an issue with implications for the long term fate of our own and other civilizations and for the much-debated number of technological civilizations in the Galaxy. We show that the physical barrier to interstellar travel can be greatly reduced if voyagers are patient, and wait for the close passage of another star. For a representative time of $sim$1 Gyr, characteristic of the remaining time that Earth will remain habitable, one anticipates a passage of another star within $sim 1500$~AU. This lowers the travel time for interstellar migration by $sim$ two orders of magnitude compared with calculated travel times based on distances comparable to average interstellar separations (i.e., $sim$1 pc) in the solar vicinity. We consider the implications for how long-lived civilizations may respond to stellar evolution, including the case of stars in wide binaries, and the difficulties of identifying systems currently undergoing a relevant close encounter. Assuming that life originates only around G-type stars, but migrates primarily to lower mass hosts when the original system becomes uninhabitable, the fraction of extant technological civilizations that exist as diaspora can be comparable to the fraction that still orbit their original host stars.
We study an interstellar signaling scheme which was originally proposed by Seto (2019) and efficiently links intentional transmitters to ETI searchers through a conspicuous astronomical burst, without prior communication. Based on the geometrical and
Many stars do not live alone, but instead have one or more stellar companions. Observations show that these binaries, triples and higher-order multiples are common. Whereas the evolution of single stars and binaries have been studied extensively, the
We use a new interdisciplinary approach to study the UV surface habitability of Proxima $b$ under quiescent and flaring stellar conditions. We assumed planetary atmospheric compositions based on CO$_2$ and N$_2$ and surface pressures from 100 to 5000
Dense stellar clusters are natural sites for the origin and evolution of exotic objects such as relativistic binaries (potential gravitational wave sources), blue stragglers, etc. We investigate the secular dynamics of a binary system driven by the g
Polluted white dwarfs are generally accreting terrestrial-like material that may originate from a debris belt like the asteroid belt in the solar system. The fraction of white dwarfs that are polluted drops off significantly for white dwarfs with mas