ﻻ يوجد ملخص باللغة العربية
Orchestrating parametric fitting of multicomponent spectra at scale is an essential yet underappreciated task in high-throughput quantification of materials and chemical composition. To automate the annotation process for spectroscopic and diffraction data collected in counts of hundreds to thousands, we present a systematic approach compatible with high-performance computing infrastructures using the MapReduce model and task-based parallelization. We implement the approach in software and demonstrate linear computational scaling with respect to spectral components using multidimensional experimental materials characterization datasets from photoemission spectroscopy and powder electron diffraction as benchmarks. Our approach enables efficient generation of high-quality data annotation and online spectral analysis and is applicable to a variety of analytical techniques in materials science and chemistry as a building block for closed-loop experimental systems.
We propose a novel data-driven approach for analyzing synchrotron Laue X-ray microdiffraction scans based on machine learning algorithms. The basic architecture and major components of the method are formulated mathematically. We demonstrate it throu
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed pri
Recent advances in the synthesis of polar molecular materials have produced practical alternatives to ferroelectric ceramics, opening up exciting new avenues for their incorporation into modern electronic devices. However, in order to realize the ful
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depar
Investment in brighter sources and larger and faster detectors has accelerated the speed of data acquisition at national user facilities. The accelerated data acquisition offers many opportunities for discovery of new materials, but it also presents