ﻻ يوجد ملخص باللغة العربية
Molybdenum disulfide (MoS$_2$) nanosheet is a two-dimensional material with high electron mobility and with high potential for applications in catalysis and electronics. We synthesized MoS$_2$ nanosheets using a one-pot wet-chemical synthesis route with and without Re-doping. Atom probe tomography revealed that 3.8 at.% Re is homogeneously distributed within the Re-doped sheets. Other impurities are found also integrated within the material: light elements including C, N, O, and Na, locally enriched up to 0.1 at.%, as well as heavy elements such as V and W. Analysis of the non-doped sample reveals that the W and V likely originate from the Mo precursor.
Time-resolved diffuse scattering experiments have gained increasing attention due to their potential to reveal non-equilibrium dynamics of crystal lattice vibrations with full momentum resolution. Although progress has been made in interpreting exper
Exploration of structure-property relationships as a function of dopant concentration is commonly based on mean field theories for solid solutions. However, such theories that work well for semiconductors tend to fail in materials with strong correla
To translate electrical into optical signals one uses the modulation of either the refractive index or the absorbance of a material by an electric field. Contemporary electroabsorption modulators (EAMs) employ the quantum confined Stark effect (QCSE)
Real-time monitoring is essential for understanding and eventually precise controlling of the growth of two dimensional transition-metal dichalcogenides (2D TMDCs). However, it is very challenging to carry out such kind of studies on chemical vapor d
Monolayer transition metal dichalcogenides are promising materials for photoelectronic devices. Among them, molybdenum disulphide (MoS$_2$) and tungsten disulphide (WS$_2$) are some of the best candidates due to their favorable band gap values and ba