ﻻ يوجد ملخص باللغة العربية
We find new exact solutions of the Abelian-Higgs model coupled to General Relativity, characterized by a non-vanishing superconducting current. The solutions correspond to textit{pp}-waves, AdS waves, and Kundt spaces, for which both the Maxwell field and the gradient of the phase of the scalar are aligned with the null direction defining these spaces. In the Kundt family, the geometry of the two-dimensional surfaces orthogonal to the superconducting current is determined by the solutions of the two-dimensional Liouville equation, and in consequence, these surfaces are of constant curvature, as it occurs in a vacuum. The solution to the Liouville equation also acts as a potential for the Maxwell field, which we integrate into a closed-form. Using these results, we show that the combined effects of the gravitational and scalar interactions can confine the electromagnetic field within a bounded region in the surfaces transverse to the current.
We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal s
Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally fla
We investigate a classical system that consists of a U(1) gauge field and a complex Higgs scalar field with a potential that breaks the symmetry spontaneously. We obtain numerical solutions of the system in the presence of a smoothly extended externa
In this note we revisit some of the recent 10d and 4d arguments suggesting that uplifting of supersymmetric AdS vacua leads to flattening of the potential, preventing formation of dS vacua. We explain why the corresponding 10d approach is inconclusiv
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for