ﻻ يوجد ملخص باللغة العربية
In this work, we use iterative Linear Quadratic Gaussian (iLQG) to plan motions for a mobile robot with range sensors in belief space. We address two limitations that prevent applications of iLQG to the considered robotic system. First, iLQG assumes a differentiable measurement model, which is not true for range sensors. We show that iLQG only requires the differentiability of the belief dynamics. We propose to use a derivative-free filter to approximate the belief dynamics, which does not require explicit differentiability of the measurement model. Second, informative measurements from a range sensor are sparse. Uninformative measurements produce trivial gradient information, which prevent iLQG optimization from converging to a local minimum. We densify the informative measurements by introducing additional parameters in the measurement model. The parameters are iteratively updated in the optimization to ensure convergence to the true measurement model of a range sensor. We show the effectiveness of the proposed modifications through an ablation study. We also apply the proposed method in simulations of large scale real world environments, which show superior performance comparing to the state-of-the-art methods that either assume the separation principle or maximum likelihood measurements.
In this paper, we address the problem of stochastic motion planning under partial observability, more specifically, how to navigate a mobile robot equipped with continuous range sensors such as LIDAR. In contrast to many existing robotic motion plann
Deciding whats next? is a fundamental problem in robotics and Artificial Intelligence. Under belief space planning (BSP), in a partially observable setting, it involves calculating the expected accumulated belief-dependent reward, where the expectati
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environment. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. In k
We present an integrated Task-Motion Planning (TMP) framework for navigation in large-scale environments. Of late, TMP for manipulation has attracted significant interest resulting in a proliferation of different approaches. In contrast, TMP for navi
A new belief space planning algorithm, called covariance steering Belief RoadMap (CS-BRM), is introduced, which is a multi-query algorithm for motion planning of dynamical systems under simultaneous motion and observation uncertainties. CS-BRM extend