ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-electric Tuning of Pinning-Type Permanent Magnets through Atomic-Scale Engineering of Grain Boundaries

102   0   0.0 ( 0 )
 نشر من قبل Baptiste Gault
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pinning-type magnets maintaining high coercivity, i.e. the ability to sustain magnetization, at high temperature are at the core of thriving clean-energy technologies. Among these, Sm2Co17-based magnets are excellent candidates owing to their high-temperature stability. However, despite decades of efforts to optimize the intragranular microstructure, the coercivity currently only reaches 20~30% of the theoretical limits. Here, the roles of the grain-interior nanostructure and the grain boundaries in controlling coercivity are disentangled by an emerging magneto-electric approach. Through hydrogen charging/discharging by applying voltages of only ~ 1 V, the coercivity is reversibly tuned by an unprecedented value of ~ 1.3 T. In situ magneto-structural measurements and atomic-scale tracking of hydrogen atoms reveal that the segregation of hydrogen atoms at the grain boundaries, rather than the change of the crystal structure, dominates the reversible and substantial change of coercivity. Hydrogen lowers the local magnetocrystalline anisotropy and facilitates the magnetization reversal starting from the grain boundaries. Our study reveals the previously neglected critical role of grain boundaries in the conventional magnetisation-switching paradigm, suggesting a critical reconsideration of strategies to overcome the coercivity limits in permanent magnets, via for instance atomic-scale grain boundary engineering.



قيم البحث

اقرأ أيضاً

Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformat ion in most solids is usually difficult to achieve and the strain gradient at minuscule is challenging to control. Here we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~ 1.2 nm-1) within 3 ~ 4 unit-cells, and thus obtain atomic-scale flexoelectric polarization up to ~ 38 {mu}C/cm2 at a 24 LaAlO3 grain boundary. The nanoscale flexoelectricity also modifies the electrical activity of grain boundaries. Moreover, we prove that it is a general and feasible way to form large strain gradients at atomic scale by altering the misorientation angles of grain boundaries in different dielectric materials. Thus, engineering of grain boundaries provides an effective pathway to achieve tunable flexoelectricity and broadens the electromechanical functionalities of non-piezoelectric materials.
Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proved that strain-induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid state devices.
Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by careful identifying differ ent contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit strong magnetoelectric effect. Our work may open a new avenue to the artificial design of electrically controlled magnetic devices.
Nanostructured permanent magnets are gaining increasing interest and importance for applications such as generators and motors. Thermal management is a key concern since performance of permanent magnets decreases with temperature. We investigated the magnetic and thermal transport properties of rare-earth free nanostructured SrFe12O19 magnets produced by the current activated pressure assisted densification. The synthesized magnets have aligned grains such that their magnetic easy axis is perpendicular to their largest surface area to maximize their magnetic performance. The SrFe12O19 magnets have fine grain sizes in the cross-plane direction and substantially larger grain sizes in the in-plane direction. It was found that this microstructure results in approximately a factor of two higher thermal conductivity in the in-plane direction, providing an opportunity for effective cooling. The phonons are the dominant heat carriers in this type of permanent magnets near room temperature. Temperature and direction dependent thermal conductivity measurements indicate that both Umklapp and grain boundary scattering are important in the in-plane direction, where the characteristic grain size is relatively large, while grain boundary scattering dominates the cross-plane thermal transport. The investigated nano/microstructural design strategy should translate well to other material systems and thus have important implications for thermal management of nanostructured permanent magnets.
The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficientl y high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by {using} micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnets microstructure is optimized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا