ﻻ يوجد ملخص باللغة العربية
We give a computationally-efficient PAC active learning algorithm for $d$-dimensional homogeneous halfspaces that can tolerate Massart noise (Massart and Nedelec, 2006) and Tsybakov noise (Tsybakov, 2004). Specialized to the $eta$-Massart noise setting, our algorithm achieves an information-theoretically near-optimal label complexity of $tilde{O}left( frac{d}{(1-2eta)^2} mathrm{polylog}(frac1epsilon) right)$ under a wide range of unlabeled data distributions (specifically, the family of structured distributions defined in Diakonikolas et al. (2020)). Under the more challenging Tsybakov noise condition, we identify two subfamilies of noise conditions, under which our efficient algorithm provides label complexity guarantees strictly lower than passive learning algorithms.
We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $mathsf{OPT}_{p,r}$ as the best robust classification error achieved by a halfspace that is robust to per
We study efficient PAC learning of homogeneous halfspaces in $mathbb{R}^d$ in the presence of malicious noise of Valiant~(1985). This is a challenging noise model and only until recently has near-optimal noise tolerance bound been established under t
This paper is concerned with computationally efficient learning of homogeneous sparse halfspaces in $mathbb{R}^d$ under noise. Though recent works have established attribute-efficient learning algorithms under various types of label noise (e.g. bound
In real-world applications of reinforcement learning (RL), noise from inherent stochasticity of environments is inevitable. However, current policy evaluation algorithms, which plays a key role in many RL algorithms, are either prone to noise or inef
We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent agnostic PAC model, with a focus on $L_p$ perturbations. We give a computationally efficient learning algorithm and a nearly m