ﻻ يوجد ملخص باللغة العربية
We consider a linear relaxation of a generalized minimum-cost network flow problem with binary input dependencies. In this model the flows through certain arcs are bounded by linear (or more generally, piecewise linear concave) functions of the flows through other arcs. This formulation can be used to model interrelated systems in which the components of one system require the delivery of material from another system in order to function (for example, components of a subway system may require delivery of electrical power from a separate system). We propose and study randomized rounding schemes for how this model can be used to approximate solutions to a related mixed integer linear program for modeling binary input dependencies. The introduction of side constraints prevents this problem from being solved using the well-known network simplex algorithm, however by characterizing its basis structure we develop a generalization of network simplex algorithm that can be used for its efficient solution.
For each integer $n$ we present an explicit formulation of a compact linear program, with $O(n^3)$ variables and constraints, which determines the satisfiability of any 2SAT formula with $n$ boolean variables by a single linear optimization. This con
The increasing penetration of renewables in distribution networks calls for faster and more advanced voltage regulation strategies. A promising approach is to formulate the problem as an optimization problem, where the optimal reactive power injectio
Cascading failures in complex systems have been studied extensively using two different models: $k$-core percolation and interdependent networks. We combine the two models into a general model, solve it analytically and validate our theoretical resul
In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call
We present a flexible public transit network design model which optimizes a social access objective while guaranteeing that the systems costs and transit times remain within a preset margin of their current levels. The purpose of the model is to find