ترغب بنشر مسار تعليمي؟ اضغط هنا

An Online Network Model-Free Wide-Area Voltage Control Method Using PMUs

132   0   0.0 ( 0 )
 نشر من قبل Georgia Pierrou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a novel online measurement-based Wide-Area Voltage Control (WAVC) method using Phasor Measurement Unit (PMU) data in power systems with Flexible AC Transmission System (FACTS) devices. As opposed to previous WAVC methods, the proposed WAVC does not require any model knowledge or the participation of all buses and considers both active and reactive power perturbations. Specifically, the proposed WAVC method exploits the regression theorem of the Ornstein-Uhlenbeck process to estimate the sensitivity matrices through PMU data online, which are further used to design and apply the voltage regulation by updating the reference points of FACTS devices. Numerical results on the IEEE 39- Bus and IEEE 68-Bus systems demonstrate that the proposed model-free WAVC can provide effective voltage control in various network topologies, different combinations of voltage-controlled and voltage-uncontrolled buses, under measurement noise, and in case of missing PMUs. Particularly, the proposed WAVC algorithm may outperform the model-based WAVC when an undetected topology change happens.



قيم البحث

اقرأ أيضاً

In this paper, a novel model-free wide-area damping control (WADC) method is proposed, which can achieve full decoupling of modes and damp multiple critical inter-area oscillations simultaneously using grid-connected voltage source converters (VSCs). The proposed method is purely measurement based and requires no knowledge of the network topology and the dynamic model parameters. Hence, the designed controller using VSCs can update the control signals online as the system operating condition varies. Numerical studies in the modified IEEE 68-bus system with grid-connected VSCs show that the proposed method can estimate the system dynamic model accurately and can damp inter-area oscillations effectively under different working conditions and network topologies.
This paper presents a new phasor measurement unit (PMU)-based wide-area damping control (WADC) method to suppress the critical inter-area modes of large-scale power systems. Modal participation factors, estimated by a practically model-free system id entification approach, are used to select the most suitable synchronous generators for control through the proposed WADC algorithm. It is shown that multiple inter-area modes can be sufficiently damped by the proposed approach without affecting the rest of the modes, while only a few machines are needed to perform the control. The proposed technique is applied to the IEEE 68-bus and the IEEE 145-bus systems, including the test cases with PMU measurement noise and with missing PMUs. The simulation results clearly demonstrate the good adaptivity of the control strategy subjected to network model changes, its effective damping performance comparing to power system stabilizers (PSSs), and its great potential for near real-time implementation.
In this paper, a phasor measurement unit (PMU)-based wide-area damping control method is proposed to damp the interarea oscillations that threaten the modern power system stability and security. Utilizing the synchronized PMU data, the proposed almos t model-free approach can achieve an effective damping for the selected modes using a minimum number of synchronous generators. Simulations are performed to show the validity of the proposed wide-area damping control scheme.
The ongoing energy transition challenges the stability of the electrical power system. Stable operation of the electrical power grid requires both the voltage (amplitude) and the frequency to stay within operational bounds. While much research has fo cused on frequency dynamics and stability, the voltage dynamics has been neglected. Here, we study frequency and voltage stability in the case of the simplest network (two nodes) and an extended all-to-all network via linear stability and bulk analysis. In particular, our linear stability analysis of the network shows that the frequency secondary control guarantees the stability of a particular electric network. Even more interesting, while we only consider secondary frequency control, we observe a stabilizing effect on the voltage dynamics, especially in our numerical bulk analysis.
In this paper, we consider the application of optimal periodic control sequences to switched dynamical systems. The control sequence is obtained using a finite-horizon optimal method based on dynamic programming. We then consider Euler approximate so lutions for the system extended with bounded perturbations. The main result gives a simple condition on the perturbed system for guaranteeing the existence of a stable limit cycle of the unperturbed system. An illustrative numerical example is provided which demonstrates the applicability of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا