ﻻ يوجد ملخص باللغة العربية
A standard assumption in contextual multi-arm bandit is that the true context is perfectly known before arm selection. Nonetheless, in many practical applications (e.g., cloud resource management), prior to arm selection, the context information can only be acquired by prediction subject to errors or adversarial modification. In this paper, we study a contextual bandit setting in which only imperfect context is available for arm selection while the true context is revealed at the end of each round. We propose two robust arm selection algorithms: MaxMinUCB (Maximize Minimum UCB) which maximizes the worst-case reward, and MinWD (Minimize Worst-case Degradation) which minimizes the worst-case regret. Importantly, we analyze the robustness of MaxMinUCB and MinWD by deriving both regret and reward bounds compared to an oracle that knows the true context. Our results show that as time goes on, MaxMinUCB and MinWD both perform as asymptotically well as their optimal counterparts that know the reward function. Finally, we apply MaxMinUCB and MinWD to online edge datacenter selection, and run synthetic simulations to validate our theoretical analysis.
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved th
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to d
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervis
Many machine learning systems today are trained on large amounts of human-annotated data. Data annotation tasks that require a high level of competency make data acquisition expensive, while the resulting labels are often subjective, inconsistent, an
In this paper, we investigate a new multi-armed bandit (MAB) online learning model that considers real-world phenomena in many recommender systems: (i) the learning agent cannot pull the arms by itself and thus has to offer rewards to users to incent