ﻻ يوجد ملخص باللغة العربية
We designed, constructed and have been operating a system based on single-crystal synthetic diamond sensors, to monitor the beam losses at the interaction region of the SuperKEKB asymmetric-energy electron-positron collider. The system records the radiation dose-rates in positions close to the inner detectors of the Belle II experiment, and protects both the detector and accelerator components against destructive beam losses, by participating in the beam-abort system. It also provides complementary information for the dedicated studies of beam-related backgrounds. We describe the performance of the system during the commissioning of the accelerator and during the first physics data taking.
The Belle II experiment at the SuperKEKB collider at KEK, Tsukuba, Japan has successfully started taking data with the full detector in March 2019. Belle II is a luminosity frontier experiment of the new generation to search for physics beyond the St
The Belle II experiment at the Super B factory SuperKEKB, an asymmetric $e^+e^-$ collider located in Tsukuba, Japan, is tailored to perform precision B physics measurements. The centre of mass energy of the collisions is equal to the rest mass of the
A prototype quasi-parasitic thermal neutron beam monitor based on isotropic neutron scattering from a thin natural vanadium foil and standard $^3$He proportional counters is conceptualized, designed, simulated, calibrated, and commissioned. The Europ
The Aerogel Ring Imaging Cherenkov (ARICH) counter serves as a particle identification device in the forward end-cap region of the Belle II spectrometer. It is capable of identifying pions and kaons with momenta up to $4 , {rm GeV}/c$ by detecting Ch
The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigge