ﻻ يوجد ملخص باللغة العربية
Using the generalized perturbation reduction method the Hirota equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is obtained. The components of the pulse oscillate with the sum and difference of the frequencies and the wave numbers. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse are presented.
In this work, we employ the generalized perturbation reduction method to find the two-component vector breather solution of the cubic Boussinesq equation $U_{tt} - C U_{zz} - D U_{zzzz}+G (U^{3})_{zz}=0$. Explicit analytical expressions for the shape
The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the so
Using the generalized perturbation reduction method the scalar nonlinear Schrodinger equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is o
We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Backlund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested B
We study dynamics of two coupled periodically driven oscillators. The internal motion is separated off exactly to yield a nonlinear fourth-order equation describing inner dynamics. Periodic steady-state solutions of the fourth-order equation are dete