ترغب بنشر مسار تعليمي؟ اضغط هنا

Genuinely entangling uncorrelated atoms via Jaynes-Cummings interactions

67   0   0.0 ( 0 )
 نشر من قبل Mazhar Ali
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mazhar Ali




اسأل ChatGPT حول البحث

We study three independent pairs of Jaynes-Cummings systems such that two atoms might be correlated with each other but the third atom is uncorrelated with rest. We investigate the conditions under which these uncorrelated three atoms may become genuinely entangled. We find that this task is impossible if the cavity interacting with uncorrelated atom share classical correlations with any other cavity. We observe that atomic state can become genuine multipartite entangled, at least if the cavity with uncorrelated atom, is highly entangled with any other cavity. This is an interesting and non-trivial observation and may serve as another technique to generate multipartite entangled atoms via JC-interactions. The findings can be realized with available experimental setups.



قيم البحث

اقرأ أيضاً

105 - Muhammed Yonac , Ting Yu , 2006
We investigate entanglement dynamics of two isolated atoms, each in its own Jaynes-Cummings cavity. We show analytically that initial entanglement has an interesting subsequent time evolution, including the so-called sudden death effect.
We show that Jaynes-Cummings dynamics can be observed in mesoscopic atomic ensembles interacting with a classical electromagnetic field in the regime of Rydberg blockade, where the time dynamics of the average number of Rydberg excitations in mesosco pic ensembles displays collapses and revivals typical of this model. As the frequency of Rabi oscillations between collective states of Rydberg blockaded ensembles depends on the number of interacting atoms, for randomly loaded optical dipole traps we predict collapses and revivals of Rabi oscillations. We have studied the effects of finite interaction strengths and finite laser line width on the visibility of the revivals. We have shown that observation of collapses and revivals of Rabi oscillations can be used as a signature of Rydberg blockade without the need to measure the exact number of Rydberg atoms.
79 - Ya Yang , Yan Liu , Jing Lu 2020
We study the entanglement dynamics of two atoms coupled to their own Jaynes-Cummings cavities in single-excitation space. Here we use the concurrence to measure the atomic entanglement. And the partial Bell states as initial states are considered. Ou r analysis suggests that there exist collapses and recovers in the entanglement dynamics. The physical mechanism behind the entanglement dynamics is the periodical information and energy exchange between atoms and light fields. For the initial Partial Bell states, only if the ratio of two atom-cavity coupling strengths is a rational number, the evolutionary periodicity of the atomic entanglement can be found. And whether there is time translation between two kinds of initial partial Bell state cases depends on the odd-even number of the coupling strength ratio.
The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of attention in the last decades. In general, non-Hermitian Hamiltonians are constructed by a textit{ad hoc} manner. Here, we study the (2+1) Dirac oscillator and show that in the context of the $kappa$--deformed Poincare-Hopf algebra its Hamiltonian is non-Hermitian but having real eigenvalues. The non-Hermiticity steams from the $kappa$-deformed algebra. From the mapping in [Bermudez textit{et al.}, Phys. Rev. A textbf{76}, 041801(R) 2007], we propose the $kappa$-JC and $kappa$--AJC models, which describe an interaction between a two-level system with a quantized mode of an optical cavity in the $kappa$--deformed context. We find that the $kappa$--deformation modifies the textit{Zitterbewegung} frequencies and the collapse and revival of quantum oscillations. In particular, the total angular momentum in the $z$--direction is not conserved anymore, as a direct consequence of the deformation.
The dynamics of the Buck and Sukumar model [B. Buck and C.V. Sukumar, Phys. Lett. A 81 (1981) 132] are investigated using different semi-classical information-theory tools. Interesting aspects of the periodicity inherent to the model are revealed and somewhat unexpected features are revealed that seem to be related to the classical-quantum transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا