ﻻ يوجد ملخص باللغة العربية
Experimental studies on single-molecule junctions are typically in need of a simple theoretical approach that can reproduce or be fitted to experimentally measured transport data. In this context, the single-level variant of the Landauer approach is most commonly used but methods based on Marcus theory are also gaining in popularity. Recently, a generalized theory unifying these two approaches has also been developed. In the present work, we extend this theory so that it includes entropic effects (which can be important when polar solvents are involved, but are likely minor for solid-state systems). We investigate the temperature-dependence of the electric current and compare it to the behavior predicted by the Landauer and the conventional Marcus theory. We argue that this generalized theory provides a simple yet effective framework for understanding charge transport through molecular junctions. Furthermore, we explore the role of the entropic effects in different transport regimes and suggest experimental criteria for detecting them in solvated molecular junctions. Lastly, in order to account for nuclear tunnelling effects, we also demonstrate how lifetime broadening can be introduced into the Marcus-Levich-Dogonadze-Jortner-type description of electron transport.
Introduction (2) Experimental background: Test beds (8) Theoretical approaches: A microscopic model(10) The electron-phonon coupling(14)Time and energy scales(15) Theoretical methods(19)Numerical calculations(28) Incoherent vs. coherent transpo
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an
We solve the coherent multiple Andreev reflection (MAR) problem and calculate current-voltage characteristics (IVCs) for Josephson SINIS junctions, where S are local-equilibrium superconducting reservoirs, I denotes tunnel barriers, and N is a short
The conductance of single molecule junctions is calculated using a Landauer approach combined to many-body perturbation theory MBPT) to account for electron correlation. The mere correction of the density-functional theory eigenvalues, which is the s
We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. T